Open Access
Issue
MATEC Web Conf.
Volume 396, 2024
8th World Multidisciplinary Civil Engineering - Architecture - Urban Planning Symposium (WMCAUS 2023)
Article Number 05005
Number of page(s) 13
Section Structural Engineering
DOI https://doi.org/10.1051/matecconf/202439605005
Published online 24 May 2024
  1. J. Králik, “Safety of nuclear power plant against the aircraft attack”, Applied Mechanics and Materials vol. 617, pp. 76-80 (2014), DOI: 10.4028/www.scientific.net/AMM.617.76. [CrossRef] [Google Scholar]
  2. Livermore Software Technology Corporation (1997), LS-Dyna® Theoretical Manual. Livermore, CA: Livermore Software Technology Corporation. [Google Scholar]
  3. G. Randers-Pehrson, K.A. Banister, “Airblast loading model for DYNA2D and DYNA3D”, Army Research Laboratory (1997), Rept. ARL-TR-1310, U.S. [Google Scholar]
  4. F.G. Friedlander, “The diffraction of sound pulses I. Diffraction by a semi-infinite plane”, Proceedings of the Royal Society A (1946), ISSN 0080-5630. DOI: 10.1098/rspa.1946.0046. [Google Scholar]
  5. V. Karlos, G. Solomos, “Calculation of blast loads for application to structural components”, JRC Technical Reports (2013) Report EUR 26456 EN, Luxembourg. ISSN 1831-9424. DOI: 10.2788/61866. [Google Scholar]
  6. E. Lee, J. Horning, J. Kury, “Adiabatic expansion of high explosives detonation products”, Lawrence Livermore National Laboratory (1968), University of California, Livermore, TID 4500-UCRL 50422. [Google Scholar]
  7. E. Lee, M. Finger, W. Collins, “JWL equation of state coefficients for high explosives”, Report UCID-16189, Lawrence Livermore National Laboratory (1973), University of California, Livermore, California. [Google Scholar]
  8. B.M. Dobratz, P.C. Crawford, “LLNL explosive handbook - properties of chemical explosives and explosive simulants”, Lawrence Livermore National Laboratory (1985), University of California, Livermore, California. [Google Scholar]
  9. G.F. Kinney, K.J. Graham, “Explosive shocks in Air”, Springer-Verlag Berlin Heidelberg (1985) Online ISBN: 978-3-642-86682-1, 1985. DOI: 10.1007/978-3-64286682-1. [Google Scholar]
  10. Z.S. Tabatabaei, J.S. Volz, “A comparison between three different blast methods in LS-Dyna®: LBE, MM-ALE, Coupling of LBE and MM-ALE”, paper presented at the 12th International LS-Dyna® Users Conference, Detroit US, 2012. [Google Scholar]
  11. T. Slavik, “A coupling of empirical explosive blast loads to ALE air domains in Ls- Dyna®”, Paper presented at the 7th European LS-Dyna® Conference, Salzburg Austria 2009. [Google Scholar]
  12. R.A. Gingold, J.J. Monaghan, “Smoothed particle hydrodynamics: theory and application to non-spherical stars”, Monthly Notices of the Royal Astronomical Society vol. 181, is. 3, p. 375-389 (1977), ISSN (online): 1365-2966. DOI: 10.1093/MNRAS/181.3.375”. [CrossRef] [Google Scholar]
  13. L.B. Lucy, “A numerical approach to the testing of the fission hypothesis”, The Astronomical Journal, vol. 82, p. 1013-24 (1977). ISSN: 00046256. DOI: 10.1086/112164 [NASA ADS] [CrossRef] [Google Scholar]
  14. L.D. Libersky, P.W. Randles, T.C. Carney, D.L. Dickinson, “Recent improvements in SPH modeling of hypervelocity impact”, International Journal of Impact Engineering, vol. 20, is. 6-10, p. 525-532 (1997). ISSN: 0734-743X. DOI: 10.1016/S0734-743X(97)87441-6. [CrossRef] [Google Scholar]
  15. R. Pramanik, D. Deb, “Implementation of smoothed particle hydrodynamics for detonation of explosive with application to rock fragmentation”, Rock Mech Rock Eng. 48(4):1683 (2015). [CrossRef] [Google Scholar]
  16. J.Y. Chen, F.S. Lien, “Simulations for soil explosion and its effects on structures using SPH method”, International Journal of Impact Engineering, vol. 112, p. 41-51 (2018), ISSN: 0734-743X. DOI: 10.1016/j.ijimpeng.2017.10.008. [CrossRef] [Google Scholar]
  17. L. Schwer, T. Hailong, S. Mhamed, “LS-Dyna Air Blast Techniques: Comparisons with Experiments for Close-in Charges”, Paper presented at the 10th European LS- Dyna® Conference, Würzburg Deutschland 2015. [Google Scholar]
  18. J. Trajkovski, “Comparison of MM-ALE and SPH methods for modelling blast wave reflections of flat and shaped surfaces”, Paper presented at the 11th European LS- Dyna® Conference, Salzburg Österreich 2017. [Google Scholar]
  19. L.J. Malvar, C.A. Ross, “Review of strain rate effects for concrete in tension”, ACI Materials Journal 95(6) 735-739 (1998). DOI: 10.14359/418. [Google Scholar]
  20. Y.S. Tai, T.L. Chu, H.T. Hu, J.Y. Wu, “Dynamic response of a reinforced concrete slab subjected to air blast load”, Theoretical and Applied Fracture Mechanics. vol. 56, issue. 3, pages.140-147 (2011). ISSN 0167-8442. DOI: 10.1016/j.tafmec.2011.11.002. [CrossRef] [Google Scholar]
  21. C.F. Zhao, J.Y. Chen, “Damage mechanism and mode of square reinforced slab subjected to blast loading”, Theoretical and Applied Fracture Mechanics. vol. 63-64, p. 54-62. (2013) ISSN 0167-8442. DOI: 10.1016/j.tafmec.2013.03.006. [CrossRef] [Google Scholar]
  22. C.F. Zhao, J.Y. Chen, Y. Wang, S.J. Lu, “Damage mechanism and response of reinforced concrete containment structure under internal blast loading”, Theoretical and Applied Fracture Mechanics. vol. 61, p. 12-20 (2012) ISSN 0167-8442. DOI: 10.1016/j.tafmec.2012.08.002. [CrossRef] [Google Scholar]
  23. G. Thiagarajan, A.V. Kadambi, S. Robert, C.F. Johnson, “Experimental and finite element analysis of doubly reinforced concrete slabs subjected to blast loads”, International Journal of Impact Engineering. vol. 75, p. 162-173 (2015). ISSN 0734743X. DOI: 10.1016/j.ijimpeng.2014.07.018. [CrossRef] [Google Scholar]
  24. B. Dubec, P. Manas, J. Stoller, P. Stonis, “Experimental and numerical assessment of fibre reinforced concrete slab under blast load”, ICMT 2019-7th International Conference on Military Technologies, Proceedings 2019. ISBN: 978-172814593-8. DOI: 10.1109/MILTECHS.2019.8870129. [Google Scholar]
  25. Y. Gao, Y. Zhou, J. Zhou, X. Kong, B. Zhang, S. Liu, J. Feng, N. Zhu, H. Fan and F. Jin, “Blast responses of one-way sea-sand seawater concrete slabs reinforced with BFRP bars”, Construction and Building Materials. vol. 232, 117254 (2020). DOI: 10.1016/j.conbuildmat.2019.117254. [CrossRef] [Google Scholar]
  26. J.E. Crawford, L.J. Malvar, “User’s and Theoretical Manual for K&C Concrete Model”, Report No. TR-97-53.1, Karagozian & Case Structural Engineers, Glendale, CA, December 23rd 1997. [Google Scholar]
  27. L.J. Malvar, “Review of Static and Dynamic Properties of Steel Reinforcing Bars”, ACI Materials Journal 95(5) 609-616 (1998). DOI: 10.14359/403. [Google Scholar]
  28. J. Feng, Y. Zhou, P. Wang, B. Wang, J. Zhou, H. Chen, H. Fan, F. Jin, “Experimental research on blast-resistance of one-way concrete slabs reinforced by BFRP bars under close-in explosion”, Engineering Structures, vol. 150 p.550-561 (2017). ISSN: 01410296. DOI: 10.1016/j.engstruct.2017.07.074. [CrossRef] [Google Scholar]
  29. B. Hopkinson, “British Ordnance board minutes 13565”, in: The National Arch., Kew, UK, pp. 11 (1915). [Google Scholar]
  30. C. Cranz, “Lehrbuch der Ballistik. Erster Band. Ausere Balistik”, Springer Verlag, Berlin (1925). [Google Scholar]
  31. L.J. Malvar, J.E. Crawford, J.W. Wesewich, D. Simons, “A New Concrete Material Model for DYNA3D”, Report No. TM-94-14.3, Report to the Defense Nuclear Agency, (1994) Karagozian & Case Structural Engineers, Glendale, CA. [Google Scholar]
  32. L.J. Malvar, J.E. Crawford, J.W. Wesewich, D. Simons, “A New Concrete Material Model for DYNA3D - Release II: Shear Dilation and Directional Rate Enhancements”, Report No. TR-96-2.2, Report to the Defense Nuclear Agency, (1996) Karagozian & Case Structural Engineers, Glendale, CA. [Google Scholar]
  33. L.J. Malvar, J.E. Crawford, K.B. Morrill, “K&C concrete material model release III - automated generation of material model input”, Report No. TR-99-24-B1, Report to the Defense Nuclear Agency, (2000) Karagozian & Case Structural Engineers, Glendale, CA. [Google Scholar]
  34. J.M. Magallanes, Y. Wu, L.J. Malvar, J.E. Crawford, “Recent Improvements to Release III of the K&C Concrete Model”, paper presented at the 11th International LS- Dyna Users Conference, Detroit, US, 2010. [Google Scholar]
  35. J.E. Crawford, Y. Wu, H.J. Choi, J.M. Magallanes, S. Lan, “Use and Validation of the Release III K&C Concrete Material Model in LS-Dyna”, Public report no. TR-11-36.6, (2012) Karagozian & Case Structural Engineers, Glendale, CA. [Google Scholar]
  36. W.F. Chen, D.J. Han, “Plasticity for structural engineers”, Springer-Verlag, New York, 1988. [CrossRef] [Google Scholar]
  37. M. Husek, J. Kala, “Uncertainties in blast simulations evaluated with Smoothed Particle Hydrodynamics method”, Structural Engineering and Mechanics, vol. 74, pp. 771-787 (2020), DOI: 10.12989/sem.2020.74.6.771 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.