Open Access
Issue
MATEC Web Conf.
Volume 396, 2024
8th World Multidisciplinary Civil Engineering - Architecture - Urban Planning Symposium (WMCAUS 2023)
Article Number 02010
Number of page(s) 9
Section Construction Materials
DOI https://doi.org/10.1051/matecconf/202439602010
Published online 24 May 2024
  1. M. Pasetto and N. Baldo, “Computational analysis of the creep behaviour of bituminous mixtures.” 94, 784-790 (2015). https://doi.org/10.1016/j.conbuildmat.2015.07.054 [Google Scholar]
  2. M. Pasetto and N. Baldo, “Creep Response of Asphalt Concretes: Visco-Elasto-Plastic Modeling.” 8(2), 63-71 (2015). https://doi.org/10.6135/ijprt.org.tw/2015.8(2).63 [Google Scholar]
  3. J. Pallant, (Open University Press/McGraw-Hill, London, UK, 2016). [Google Scholar]
  4. M.T. Hagan, H.B. Demuth, M.H. Beale and O. De Jesús, 2nd edition, (PWS Publishing Co., Boston, USA, 2014), pp. (11)4-7, (12)19-27, (13)8-19. [Google Scholar]
  5. N. Baldo, M. Miani, F. Rondinella and C. Celauro, “A Machine Learning Approach to Determine Airport Asphalt Concrete Layer Moduli Using Heavy Weight Deflectometer Data”, Sustainability, 8831 (2021). https://doi.org/10.3390/su13168831 [CrossRef] [Google Scholar]
  6. M.T. Hagan and M.B. Menhaj, “Training feed-forward networks with the Marquardt algorithm”, IEEE Trans. Neural Netw. 5, 989-993 (1994). https://doi.org/10.1109/72.329697 [CrossRef] [Google Scholar]
  7. D. J. MacKay, “Bayesian interpolation.” Neural Comput. 4, 415-447 (1992). https://doi.Org/10.1162/neco.1992.4.3.415 [CrossRef] [Google Scholar]
  8. N. Baldo, M. Miani, F. Rondinella, E. Manthos and J. Valentin, “Road Pavement Asphalt Concretes for Thin Wearing Layers: A Machine Learning Approach towards Stiffness Modulus and Volumetric Properties Prediction.” Period. Polytech. Civ. Eng. 66 (4), 1087-1097 (2022). https://doi.org/10.3311/PPci.19996 [Google Scholar]
  9. F. Rondinella, F. Daneluz, P. Vacková, J. Valentin and N. Baldo, “Volumetric Properties and Stiffness Modulus of Asphalt Concrete Mixtures Made with Selected Quarry Fillers: Experimental Investigation and Machine Learning Prediction.” Materials 16 (3), 1017 (2023). https://doi.org/10.3390/ma16031017 [CrossRef] [Google Scholar]
  10. J. Benesty, J. Chen, Y. Huang and I. Cohen, “Pearson correlation coefficient” in Springer, Berlin/Heidelberg, Germany, 2009, pp. 1-4. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.