Open Access
Issue
MATEC Web Conf.
Volume 393, 2024
2nd International Conference on Sustainable Technologies and Advances in Automation, Aerospace and Robotics (STAAAR-2023)
Article Number 02003
Number of page(s) 6
Section Design, Development, and Optimization
DOI https://doi.org/10.1051/matecconf/202439302003
Published online 13 March 2024
  1. Global Wind Report 2019; Global Wind Energy Council: Brussels, Belgium, 2020. https://gwec.net/global-wind-report-2019/. [Google Scholar]
  2. Tsikalakis, Antonis & Hatziargyriou, Nikos & Katsigiannis, Yiannis & Georgilakis, Pavlos. (2009). Impact of Wind Power Forecasting Error Bias on the Economic Operation of Autonomous Power Systems. Wind Energy. 12. 315–331. DOI: 10.1002/we.294. [CrossRef] [Google Scholar]
  3. Lima J.M., Guetter A.K., Freitas S.R., Panetta J., de Mattos J.G.Z. A meteorological-statistic model for ST wind power forecasting. J. Control Autom. Electr. Syst. (2017);28(5):679–691. DOI: 10.1007/s40313-017-0329-8. [CrossRef] [Google Scholar]
  4. Wang J., Zhou Q., Zhang X. IOP Conf. Ser.: Earth Environ.Sci. (2018);199:022015. https://doi.org/10.1088/1755-1315/199/2/022015 [CrossRef] [Google Scholar]
  5. Robles-Rodriguez C., Dochain D. Decomposed threshold armax models for short- to medium-term wind power forecasting. IFAC-PapersOnLine (2018);51(13):49–54, ISSN 2405-8963, https://doi.org/10.1016/j.ifacol.2018.07.253. [CrossRef] [Google Scholar]
  6. Pearre N.S., Swan L.G. Statistical approach for improved wind speed forecasting for wind power production. Sustainable Energy Technol. Assess. (2018);27:180–191. https://doi.org/10.1016/j.seta.2018.04.010. [CrossRef] [Google Scholar]
  7. Yu Zhang, Yanting Li, Guangyao Zhang, Short-term wind power forecasting approach based on Seq2Seq model using NWP data, Energy, Volume 213, (2020), 118371, ISSN 0360-5442, https://doi.org/10.1016Zj.energy.2020.118371. [CrossRef] [Google Scholar]
  8. Sideratos G., Hatziargyriou N.D. An advanced statistical method for wind power forecasting. IEEE Trans. Power Syst. (2007);22(1):258–265. https://doi.org/10.1109/TPWRS.2006.889078. [CrossRef] [Google Scholar]
  9. Lahouar A., Slama J.B.H., Hour-ahead wind power forecast based on random forests. Renewable Energy (2017); 109:529–541. https://doi.org/10.1016/j.renene.2017.03.064. [CrossRef] [Google Scholar]
  10. Sun G., Jiang C., Cheng P., Liu Y., Wang X., Fu Y., He Y. STwind power forecasts by a synthetical similar time series data mining method. Renewable Energy (2018);115:575–584. https://doi.org/10.1016/j.renene.2017.08.071. [CrossRef] [Google Scholar]
  11. Yu R., Gao J., Yu M., Lu W., Xu T., Zhao M., Zhang J., Zhang R., Zhang Z. LSTM-EFG for wind power forecasting based on sequential correlation features. Future Gener. Comput. Syst. (2019);93:33–42. https://doi.org/10.1016/j.future.2018.09.054. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.