Open Access
Issue
MATEC Web Conf.
Volume 393, 2024
2nd International Conference on Sustainable Technologies and Advances in Automation, Aerospace and Robotics (STAAAR-2023)
Article Number 01008
Number of page(s) 9
Section Materials Science and Manufacturing Processes
DOI https://doi.org/10.1051/matecconf/202439301008
Published online 13 March 2024
  1. Y. Xu, J. Yuan, L. Fei, X. Wang, Q. Bao, Y. Wang, K. Zhang, Y. Zhang, Selenium- doped black phosphorus for high-responsivity 2d photodetectors. Small. 12, no. 36, pp. 5000–5007(2016) https://doi.org/10.1002/smll.201600692 [CrossRef] [Google Scholar]
  2. G. Yang, Y. Gu, P. Yan, J. Wang, J. Xue, X. Zhang, N. Lu, G. Chen, Chemical vapor deposition growth of vertical mos2 nanosheets on p-gan nanorods for photodetector application. ACS App. Mat. Int. 11, no. 8, pp. 8453–8460 (2019) https://doi.org/10.1021/acsami.8b22344 [CrossRef] [Google Scholar]
  3. S. P. Chang, K. J. Chen, Zinc oxide nanoparticle photodetector. J Nano. 2012, 602398 (2012) https://doi.org/10.1155/2012/602398 [Google Scholar]
  4. Y. Xie, B. Zhang, S. Wang, D. Wang, A. Wang, Z. Wang, H. Yu, H. Zhang, Y. Chen, M. Zhao, B. Huang, L. Mei, J. Wang, Ultrabroadband MoS2 photodetector with spectral response from 445 to 2717 nm. Adv. Mat. 29, no. 17, p. 1605972 (2017) https://doi.org/10.1002/adma.201605972 [CrossRef] [Google Scholar]
  5. N. Choudhary, M.D. Patel, J. Park, B. Sirota, & W. Choi, Synthesis of large scale MoS2 for electronics and energy applications. J Mat. Res. 31, no. 7, pp. 824–831 (2016) https://doi.org/10.1557/jmr.2016.100 [CrossRef] [Google Scholar]
  6. Shreya, P. Phogat, R. Jha, S. Singh, Elevated refractive index of MoS2 amorphous nanoparticles with a reduced band gap applicable for optoelectronics. pp. 431–439 (2023) https://doi.org/10.1007/978-981-99-2349-639 [Google Scholar]
  7. X. Ren, Q. Ma, H. Fan, L. Pang, Y. Zhang, Y. Yao, X. Ren, and S. F. Liu, A Se-doped MoS2 nanosheet for improved hydrogen evolution reaction. Chem. Comm. 51, no. 88, pp. 15997–16000 (2015) https://doi.org/10.1039/C5CC06847A [CrossRef] [Google Scholar]
  8. P. Phogat, Shreya, R. Jha, S. Singh, Optical and microstructural study of wide band gap ZnO@ZnS core-shell nanorods to be used as solar cell applications. pp. 419–429 (2023) https://doi.org/10.1007/978-981-99-2349-638 [Google Scholar]
  9. Shreya, P. Phogat, R. Jha, S. Singh, Microwave-synthesized Y—W03 nanorods exhibiting high current density and diffusion characteristics. Trans. Met. Chem. 48, no. 3, pp. 167–183 (2023) https://doi.org/10.1007/s11243-023-00533-y [CrossRef] [Google Scholar]
  10. D. Kumari, Shreya, P. Phogat, Dipti, S. Singh, R. Jha, Enhanced electrochemical behavior of C@CdS core-shell heterostructures. Mat. Sci. and Eng. B. 301, p. 117212 (2024) https://doi.org/10.1016/j.mseb.2024.117212 [CrossRef] [Google Scholar]
  11. P. Phogat, Shreya, R. Jha, S. Singh, Diffusion controlled features of microwave assisted ZnS/ZnO nanocomposite with reduced band gap. ECS J. of S.S.S. and Tech. 12, no. 3, p. 034004 (2023) DOI: 10.1149/2162-8777/acc426 [Google Scholar]
  12. T. Kumar, Shreya, P. Phogat, V. Sahgal, R. Jha, Surfactant-mediated modulation of morphology and charge transfer dynamics in tungsten oxide nanoparticles. Phys. Scr. 98, no. 8 (2023) http://dx.doi.org/10.1088/1402-4896/ace566 [Google Scholar]
  13. S. Sharma, P. Phogat, R. Jha, S. Singh, Electrochemical and optical properties of microwave assisted mos2 nanospheres for solar cell application. Int. J. of S.G. and C.E. pp. 66–72 (2023) http://dx.doi.org/10.12720/sgce.12.3.66-72 [Google Scholar]
  14. Dipti, P. Phogat, Shreya, D. Kumari, S. Singh, Fabrication of tunable band gap carbonbased zinc nanocomposites for enhanced capacitive behaviour. Phys. Scr. 98, no. 9 (2023) DOI: 10.1088/1402-4896/ACF07B [Google Scholar]
  15. J. Dahiya, P. Phogat, A. Hooda, S. Khasa, Investigations of praseodymium doped LiF- ZnO-Bi2O3-B2O3 glass matrix for photonic applications. AIP Conf Proc. 2995, no. 1 (2024) https://doi.org/10.1063/5.0178197 [Google Scholar]
  16. P. Phogat, S. Shreya, R. Jha, S. Singh, Impedance study of zinc sulphide quantum dots via one step green synthesis. Mat. Sci. For. 1099, pp. 119–125 (2023) http://dx.doi.org/10.4028/p-G1CCxq [Google Scholar]
  17. P. Phogat, S. R. Jha, S. Singh, Electrochemical analysis of thermally treated twodimensional zinc sulphide hexagonal nano-sheets with reduced band gap. Phys. Scr. 98, no. 12 (2023) http://dx.doi.org/10.1088/1402-4896/ad0d93 [Google Scholar]
  18. Y. Xu, M. A. A. Schoonen, The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Min. 85, no. 3-4, pp. 543–556 (2000) https://doi.org/10.2138/am-2000-0416 [CrossRef] [Google Scholar]
  19. R. G. Pearson, Absolute electronegativity and hardness: application to inorganic chemistry. Inorg. Chem. 27, no. 4, pp. 734–740 (1988) http://dx.doi.org/10.1021/ic00277a030 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.