Open Access
Issue
MATEC Web Conf.
Volume 392, 2024
International Conference on Multidisciplinary Research and Sustainable Development (ICMED 2024)
Article Number 01188
Number of page(s) 11
DOI https://doi.org/10.1051/matecconf/202439201188
Published online 18 March 2024
  1. C. Ding, Y. Xia, Z. Yuan, H. Yang, J. Fu, and Z. Chen, “Performance prediction for a fuel cell air compressor based on the combination of backpropagation neural network optimized by genetic algorithm (GA-BP) and support vector machine (SVM) algorithms,” Thermal Science and Engineering Progress, vol. 44, Sep. 2023, doi: 10.1016/j.tsep.2023.102070. [CrossRef] [Google Scholar]
  2. “Adaptive Control of Electric Vehicle Drives through Neural Network Ensembles – Search | ScienceDirect.com.” Accessed: Jan. 05, 2024. [Online]. Available: https://www.sciencedirect.com/search?qs=Adaptive%20Control%20of%20Electric%20Vehicle%20Drives%20through%20Neural%20Network%20Ensembles [Google Scholar]
  3. J. Feng, D. Qin, Y. Liu, D. Sun, and Z. Guo, “Data-driven cloud-based intelligent gear-shift decision strategy of vehicle considering driving behavior and environment,” J Clean Prod, vol. 429, Dec. 2023, doi: 10.1016/j.jclepro.2023.139558. [Google Scholar]
  4. S. Wen, N. Lin, S. Huang, Z. Wang, and Z. Zhang, “Lithium battery health state assessment based on vehicle-to-grid (V2G) real-world data and natural gradient boosting model,” Energy, vol. 284, Dec. 2023, doi: 10.1016/j.energy.2023.129246. [Google Scholar]
  5. T. Alsuwian et al., “A Review of Expert Hybrid and Co-Estimation Techniques for SOH and RUL Estimation in Battery Management System with Electric Vehicle Application,” Expert Syst Appl, p. 123123, Jan. 2024, doi: 10.1016/J.ESWA.2023.123123. [Google Scholar]
  6. Y. Liu, Y. Zhang, H. Yu, Z. Nie, Y. Liu, and Z. Chen, “A novel data-driven controller for plug-in hybrid electric vehicles with improved adaptabilities to driving environment,” J Clean Prod, vol. 334, Feb. 2022, doi: 10.1016/j.jclepro.2021.130250. [Google Scholar]
  7. M. S. Hossain Lipu et al., “Intelligent algorithms and control strategies for battery management system in electric vehicles: Progress, challenges and future outlook,” J Clean Prod, vol. 292, Apr. 2021, doi: 10.1016/j.jclepro.2021.126044. [CrossRef] [Google Scholar]
  8. H. Rezaei, S. E. Abdollahi, S. Abdollahi, and S. Filizadeh, “Energy managment strategies of battery-ultracapacitor hybrid storage systems for electric vehicles: Review, challenges, and future trends,” J Energy Storage, vol. 53, Sep. 2022, doi: 10.1016/j.est.2022.105045. [CrossRef] [Google Scholar]
  9. A. Martinez-Seras, J. Del Ser, J. L. Lobo, P. Garcia-Bringas, and N. Kasabov, “A novel Out-of-Distribution detection approach for Spiking Neural Networks: Design, fusion, performance evaluation and explainability,” Information Fusion, vol. 100, Dec. 2023, doi: 10.1016/j.inffus.2023.101943. [CrossRef] [Google Scholar]
  10. E. M. Asensio, G. A. Magallán, L. Pérez, and C. H. De Angelo, “Short-term power demand prediction for energy management of an electric vehicle based on batteries and ultracapacitors,” Energy, vol. 247, May 2022, doi: 10.1016/j.energy.2022.123430. [CrossRef] [Google Scholar]
  11. A. K. Vamsi Krishna Reddy and K. Venkata Lakshmi Narayana, “Meta-heuristics optimization in electric vehicles –an extensive review,” Renewable and Sustainable Energy Reviews, vol. 160, May 2022, doi: 10.1016/j.rser.2022.112285. [CrossRef] [Google Scholar]
  12. Y. Ye, J. Zhang, S. Pilla, A. M. Rao, and B. Xu, “Application of a new type of lithium-sulfur battery and reinforcement learning in plug-in hybrid electric vehicle energy management,” J Energy Storage, vol. 59, Mar. 2023, doi: 10.1016/j.est.2022.106546. [Google Scholar]
  13. O. Sadeghian, A. Oshnoei, B. Mohammadi-ivatloo, V. Vahidinasab, and A. Anvari-Moghaddam, “A comprehensive review on electric vehicles smart charging: Solutions, strategies, technologies, and challenges,” J Energy Storage, vol. 54, Oct. 2022, doi: 10.1016/j.est.2022.105241. [CrossRef] [Google Scholar]
  14. A. Mozaffari and N. L. Azad, “An ensemble neuro-fuzzy radial basis network with self-adaptive swarm based supervisor and negative correlation for modeling automotive engine coldstart hydrocarbon emissions: A soft solution to a crucial automotive problem,” Applied Soft Computing Journal, vol. 32, pp. 449–467, 2015, doi: 10.1016/j.asoc.2015.04.009. [CrossRef] [Google Scholar]
  15. P. Dong et al., “Practical application of energy management strategy for hybrid electric vehicles based on intelligent and connected technologies: Development stages, challenges, and future trends,” Renewable and Sustainable Energy Reviews, vol. 170, Dec. 2022, doi: 10.1016/j.rser.2022.112947. [CrossRef] [Google Scholar]
  16. R. Chen et al., “MultiCycleNet: Multiple Cycles Self-Boosted Neural Network for Short-term Electric Household Load Forecasting,” Sustain Cities Soc, vol. 76, Jan. 2022, doi: 10.1016/j.scs.2021.103484. [Google Scholar]
  17. R. G. Nascimento, M. Corbetta, C. S. Kulkarni, and F. A. C. Viana, “Hybrid physics-informed neural networks for lithium-ion battery modeling and prognosis,” J Power Sources, vol. 513, Nov. 2021, doi: 10.1016/j.jpowsour.2021.230526. [CrossRef] [Google Scholar]
  18. C. Yang, Z. Lu, W. Wang, Y. Li, Y. Chen, and B. Xu, “Energy management of hybrid electric propulsion system: Recent progress and a flying car perspective under three-dimensional transportation networks,” Green Energy and Intelligent Transportation, vol. 2, no. 1, Feb. 2023, doi: 10.1016/j.geits.2022.100061. [CrossRef] [Google Scholar]
  19. V. Selvaraj and I. Vairavasundaram, “A comprehensive review of state of charge estimation in lithium-ion batteries used in electric vehicles,” J Energy Storage, vol. 72, Nov. 2023, doi: 10.1016/j.est.2023.108777. [Google Scholar]
  20. X. Sun, J. Fu, H. Yang, M. Xie, and J. Liu, “An energy management strategy for plug-in hybrid electric vehicles based on deep learning and improved model predictive control,” Energy, vol. 269, Apr. 2023, doi: 10.1016/j.energy.2023.126772. [Google Scholar]
  21. A. Karthick, V. Mohanavel, V. K. Chinnaiyan, J. Karpagam, I. Baranilingesan, and S. Rajkumar, “State of charge prediction of battery management system for electric vehicles,” Active Electrical Distribution Network: Issues, Solution Techniques, and Applications, pp. 163–180, Jan. 2022, doi: 10.1016/B978-0-323-85169-5.00012-5. [Google Scholar]
  22. H. Jondhle, A. B. Nandgaonkar, S. Nalbalwar, and S. Jondhle, “An artificial intelligence and improved optimization-based energy management system of battery-fuel cell-ultracapacitor in hybrid electric vehicles,” J Energy Storage, vol. 74, Dec. 2023, doi: 10.1016/j.est.2023.109079. [CrossRef] [Google Scholar]
  23. M. Kurucan, M. Özbaltan, Z. Yetgin, and A. Alkaya, “Applications of artificial neural network based battery management systems: A literature review,” Renewable and Sustainable Energy Reviews, vol. 192, p. 114262, Mar. 2024, doi: 10.1016/J.RSER.2023.114262. [CrossRef] [Google Scholar]
  24. Z. He, X. Ni, C. Pan, S. Hu, and S. Han, “Full-process electric vehicles battery state of health estimation based on Informer novel model,” J Energy Storage, vol. 72, Nov. 2023, doi: 10.1016/j.est.2023.108626. [Google Scholar]
  25. A. Manoharan, K. M. Begam, V. R. Aparow, and D. Sooriamoorthy, “Artificial Neural Networks, Gradient Boosting and Support Vector Machines for electric vehicle battery state estimation: A review,” J Energy Storage, vol. 55, Nov. 2022, doi: 10.1016/j.est.2022.105384. [CrossRef] [Google Scholar]
  26. Md. Z. ul Haq, H. Sood, and R. Kumar, “Effect of using plastic waste on mechanical properties of fly ash based geopolymer concrete,” Mater Today Proc, 2022. [Google Scholar]
  27. S. Kumar, A. Chopra, and M. Z. U. Haq, “EXPERIMENTAL INVESTIGATION ON MARBLE DUST, RICE HUSK ASH, AND FLY ASH BASED GEOPOLYMER BRICK”. [Google Scholar]
  28. V. S. Rana et al., “Assortment of latent heat storage materials using multi criterion decision making techniques in Scheffler solar reflector,” International Journal on Interactive Design and Manufacturing (IJIDeM), pp. 1–15, 2023. [Google Scholar]
  29. H. Sood, R. Kumar, P. C. Jena, and S. K. Joshi, “Eco-friendly approach to construction: Incorporating waste plastic in geopolymer concrete,” Mater Today Proc, 2023. [Google Scholar]
  30. K. Kumar et al., “Understanding Composites and Intermetallic: Microstructure, Properties, and Applications,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01196. [Google Scholar]
  31. S. Dixit et al., “Numerical simulation of sand–water slurry flow through pipe bend using CFD,” International Journal on Interactive Design and Manufacturing, Oct. 2022, doi: 10.1007/S12008-022-01004-X. [Google Scholar]
  32. A. Prakash, M. Arora, A. Mittal, S. Kampani, and S. Dixit, “Green manufacturing: Related literature over the past decade,” Mater Today Proc, vol. 69, pp. 468–472, Jan. 2022, doi: 10.1016/J.MATPR.2022.09.142. [CrossRef] [Google Scholar]
  33. S. Bali et al., “A framework to assess the smartphone buying behaviour using DEMATEL method in the Indian context,” Ain Shams Engineering Journal, 2023, doi: 10.1016/J.ASEJ.2023.102129. [Google Scholar]
  34. J. Singh, P. Bhardwaj, R. Kumar, K. Kumar, S. Dixit, and V. Verma, “Effect of Annealing Temperature on Phase Transformation of NiCr2O4 Nanoparticles and Evaluated Its Structural and Magnetic Properties,” Lecture Notes in Mechanical Engineering, pp. 71–78, 2023, doi: 10.1007/978-981-19-4147-4_7. [Google Scholar]
  35. K. Kumar et al., “Effect of Additive on Flowability and Compressibility of Fly Ash,” Lecture Notes in Mechanical Engineering, pp. 211–217, 2023, doi: 10.1007/978-981-19-4147-4_22. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.