Open Access
Issue
MATEC Web Conf.
Volume 392, 2024
International Conference on Multidisciplinary Research and Sustainable Development (ICMED 2024)
Article Number 01187
Number of page(s) 12
DOI https://doi.org/10.1051/matecconf/202439201187
Published online 18 March 2024
  1. S. Deep, S. Banerjee, S. Dixit, and N. I. Vatin, “Critical Factors Influencing the Performance of Highway Projects: Empirical Evaluation of Indian Projects,” Buildings, vol. 12, no. 6, Jun. 2022, doi: 10.3390/BUILDINGS12060849. [CrossRef] [Google Scholar]
  2. C. Shyamlal et al., “Corrosion Behavior of Friction Stir Welded AA8090-T87 Aluminum Alloy,” Materials, vol. 15, no. 15, Aug. 2022, doi: 10.3390/MA15155165. [CrossRef] [Google Scholar]
  3. G. Upadhyay et al., “Development of Carbon Nanotube (CNT)-Reinforced Mg Alloys: Fabrication Routes and Mechanical Properties,” Metals (Basel), vol. 12, no. 8, Aug. 2022, doi: 10.3390/MET12081392. [CrossRef] [Google Scholar]
  4. P. Singh et al., “Development of performance-based models for green concrete using multiple linear regression and artificial neural network,” International Journal on Interactive Design and Manufacturing, 2023, doi: 10.1007/S12008-023-01386-6. [Google Scholar]
  5. M. Makwana et al., “Effect of Mass on the Dynamic Characteristics of Single– and Double-Layered Graphene-Based Nano Resonators,” Materials, vol. 15, no. 16, Aug. 2022, doi: 10.3390/MA15165551. [CrossRef] [Google Scholar]
  6. Md. Z. U. Haq, H. Sood, R. Kumar, and I. Merta, “Taguchi-optimized triple-aluminosilicate geopolymer bricks with recycled sand: A sustainable construction solution,” Case Studies in Construction Materials, vol. 20, p. e02780, 2024, doi: https://doi.org/10.1016/j.cscm.2023.e02780. [Google Scholar]
  7. V. Sharma and S. Singh, “Modeling for the use of waste materials (Bottom ash and fly ash) in soil stabilization,” Mater Today Proc, vol. 33, pp. 1610–1614, Jan. 2020, doi: 10.1016/J.MATPR.2020.05.569. [Google Scholar]
  8. M. Z. ul Haq, H. Sood, and R. Kumar, “SEM-Assisted Mechanistic Study: pH-Driven Compressive Strength and Setting Time Behavior in Geopolymer Concrete,” 2023. [Google Scholar]
  9. M. Z. ul Haq et al., “Waste Upcycling in Construction: Geopolymer Bricks at the Vanguard of Polymer Waste Renaissance,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01205. [Google Scholar]
  10. M. Z. ul Haq et al., “Eco-Friendly Building Material Innovation: Geopolymer Bricks from Repurposed Plastic Waste,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01201. [Google Scholar]
  11. “Optimization of Wind-Solar Hybrid Microgrids using Swarm Intelligence Algorithms – Search | ScienceDirect.com.” Accessed: Jan. 05, 2024. [Online]. Available: https://www.sciencedirect.com/search?qs=Optimization%20of%20Wind-Solar%20Hybrid%20Microgrids%20using%20Swarm%20Intelligence%20Algorithms [Google Scholar]
  12. P. Wen, Y. Xie, L. Huo, and A. Tohidi, “Optimal and stochastic performance of an energy hub-based microgrid consisting of a solar-powered compressed-air energy storage system and cooling storage system by modified grasshopper optimization algorithm,” Int J Hydrogen Energy, vol. 47, no. 27, pp. 13351–13370, Mar. 2022, doi: 10.1016/j.ijhydene.2022.02.081. [CrossRef] [Google Scholar]
  13. L. A. Aloo, P. K. Kihato, S. I. Kamau, and R. S. Orenge, “Modeling and control of a photovoltaic-wind hybrid microgrid system using GA-ANFIS,” Heliyon, vol. 9, no. 4, Apr. 2023, doi: 10.1016/j.heliyon.2023.e14678. [Google Scholar]
  14. T. Pan, Z. Wang, J. Tao, and H. Zhang, “Operating strategy for grid-connected solar-wind-battery hybrid systems using improved grey wolf optimization,” Electric Power Systems Research, vol. 220, Jul. 2023, doi: 10.1016/j.epsr.2023.109346. [Google Scholar]
  15. M. Kharrich, S. Kamel, M. Abdel-Akher, A. Eid, H. M. Zawbaa, and J. Kim, “Optimization based on movable damped wave algorithm for design of photovoltaic/ wind/ diesel/ biomass/ battery hybrid energy systems,” Energy Reports, vol. 8, pp. 11478–11491, Nov. 2022, doi: 10.1016/j.egyr.2022.08.278. [CrossRef] [Google Scholar]
  16. J. J. Bouendeu, F. A. Talla Konchou, M. N. B. Astrid, M. F. Elmorshedye, and T. René, “A systematic techno-enviro-socio-economic design optimization and power quality of hybrid renewable microgrids,” Renew Energy, vol. 218, Dec. 2023, doi: 10.1016/j.renene.2023.119297. [CrossRef] [Google Scholar]
  17. M. Rodriguez, D. Arcos–Aviles, and W. Martinez, “Fuzzy logic-based energy management for isolated microgrid using meta-heuristic optimization algorithms,” Appl Energy, vol. 335, Apr. 2023, doi: 10.1016/j.apenergy.2023.120771. [CrossRef] [Google Scholar]
  18. Y. Zhou et al., “Online energy management optimization of hybrid energy storage microgrid with reversible solid oxide cell: A model-based study,” J Clean Prod, vol. 423, Oct. 2023, doi: 10.1016/j.jclepro.2023.138663. [Google Scholar]
  19. R. Wang and R. Zhang, “Techno-economic analysis and optimization of hybrid energy systems based on hydrogen storage for sustainable energy utilization by a biological-inspired optimization algorithm,” J Energy Storage, vol. 66, Aug. 2023, doi: 10.1016/j.est.2023.107469. [Google Scholar]
  20. S. Tajjour and S. Singh Chandel, “A comprehensive review on sustainable energy management systems for optimal operation of future-generation of solar microgrids,” Sustainable Energy Technologies and Assessments, vol. 58, Aug. 2023, doi: 10.1016/j.seta.2023.103377. [CrossRef] [Google Scholar]
  21. J. Zhou and Z. Xu, “Optimal sizing design and integrated cost-benefit assessment of stand-alone microgrid system with different energy storage employing chameleon swarm algorithm: A rural case in Northeast China,” Renew Energy, vol. 202, pp. 1110–1137, Jan. 2023, doi: 10.1016/j.renene.2022.12.005. [CrossRef] [Google Scholar]
  22. Q. N. U. Islam, A. Ahmed, and S. M. Abdullah, “Optimized controller design for islanded microgrid using non-dominated sorting whale optimization algorithm (NSWOA),” Ain Shams Engineering Journal, vol. 12, no. 4, pp. 3677–3689, Dec. 2021, doi: 10.1016/j.asej.2021.01.035. [CrossRef] [Google Scholar]
  23. G. K. Suman, J. M. Guerrero, and O. P. Roy, “Optimisation of solar/wind/bio-generator/diesel/battery based microgrids for rural areas: A PSO-GWO approach,” Sustain Cities Soc, vol. 67, Apr. 2021, doi: 10.1016/j.scs.2021.102723. [CrossRef] [Google Scholar]
  24. C. G. Marcelino, G. M. C. Leite, E. F. Wanner, S. Jiménez-Fernández, and S. Salcedo-Sanz, “Evaluating the use of a Net-Metering mechanism in microgrids to reduce power generation costs with a swarm-intelligent algorithm,” Energy, vol. 266, Mar. 2023, doi: 10.1016/j.energy.2022.126317. [CrossRef] [Google Scholar]
  25. E. Szilagyi, D. Petreus, M. Paulescu, T. Patarau, S.-M. Hategan, and N. A. Sarbu, “Cost-effective energy management of an islanded microgrid,” Energy Reports, vol. 10, pp. 4516–4537, Nov. 2023, doi: 10.1016/j.egyr.2023.10.088. [CrossRef] [Google Scholar]
  26. P. A. Gbadega and Y. Sun, “A hybrid constrained Particle Swarm Optimization-Model Predictive Control (CPSO-MPC) algorithm for storage energy management optimization problem in micro-grid,” Energy Reports, vol. 8, pp. 692–708, Nov. 2022, doi: 10.1016/j.egyr.2022.10.035. [CrossRef] [Google Scholar]
  27. Y. Yu and L. Shahabi, “Optimal infrastructure in microgrids with diverse uncertainties based on demand response, renewable energy sources and two-stage parallel optimization algorithm,” Eng Appl Artif Intell, vol. 123, Aug. 2023, doi: 10.1016/j.engappai.2023.106233. [Google Scholar]
  28. A. A. Hafez, A. Y. Abdelaziz, M. A. Hendy, and A. F. M. Ali, “Optimal sizing of off-line microgrid via hybrid multi-objective simulated annealing particle swarm optimizer,” Computers and Electrical Engineering, vol. 94, Sep. 2021, doi: 10.1016/j.compeleceng.2021.107294. [CrossRef] [Google Scholar]
  29. M. Kiehbadroudinezhad et al., “Optimization of wind/solar energy microgrid by division algorithm considering human health and environmental impacts for power-Energy Convers Manag, vol. 252, Jan. 2022, doi: 10.1016/j.enconman.2021.115064. [CrossRef] [Google Scholar]
  30. M. M. Kamal, I. Ashraf, and E. Fernandez, “Planning and optimization of microgrid for rural electrification with integration of renewable energy resources,” J Energy Storage, vol. 52, Aug. 2022, doi: 10.1016/j.est.2022.104782. [CrossRef] [Google Scholar]
  31. A. Almadhor, H. T. Rauf, M. A. Khan, S. Kadry, and Y. Nam, “A hybrid algorithm (BAPSO) for capacity configuration optimization in a distributed solar PV based microgrid,” Energy Reports, vol. 7, pp. 7906–7912, Nov. 2021, doi: 10.1016/j.egyr.2021.01.034. [CrossRef] [Google Scholar]
  32. F. Li, S. Chen, C. Ju, X. Zhang, G. Ma, and W. Huang, “Research on short-term joint optimization scheduling strategy for hydro-wind-solar hybrid systems considering uncertainty in renewable energy generation,” Energy Strategy Reviews, vol. 50, Nov. 2023, doi: 10.1016/j.esr.2023.101242. [Google Scholar]
  33. J. Aguila-Leon, C. Vargas-Salgado, C. Chiñas-Palacios, and D. Díaz-Bello, “Energy management model for a standalone hybrid microgrid through a particle Swarm optimization and artificial neural networks approach,” Energy Convers Manag, vol. 267, Sep. 2022, doi: 10.1016/j.enconman.2022.115920. [CrossRef] [Google Scholar]
  34. C. D. Iweh and E. R. Akupan, “Control and optimization of a hybrid solar PV – Hydro power system for off-grid applications using particle swarm optimization (PSO) and differential evolution (DE),” Energy Reports, vol. 10, pp. 4253–4270, Nov. 2023, doi: 10.1016/j.egyr.2023.10.080. [CrossRef] [Google Scholar]
  35. S. Basak and B. Bhattacharyya, “Optimal scheduling in demand-side management based grid-connected microgrid system by hybrid optimization approach considering diverse wind profiles,” ISA Trans, vol. 139, pp. 357–375, Aug. 2023, doi: 10.1016/j.isatra.2023.04.027. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.