Open Access
Issue
MATEC Web Conf.
Volume 392, 2024
International Conference on Multidisciplinary Research and Sustainable Development (ICMED 2024)
Article Number 01169
Number of page(s) 11
DOI https://doi.org/10.1051/matecconf/202439201169
Published online 18 March 2024
  1. Md. Z. U. Haq, H. Sood, R. Kumar, and I. Merta, “Taguchi-optimized triple-aluminosilicate geopolymer bricks with recycled sand: A sustainable construction solution,” Case Studies in Construction Materials, vol. 20, p. e02780, 2024, doi: https://doi.org/10.1016/j.cscm.2023.e02780. [CrossRef] [Google Scholar]
  2. V. Sharma and S. Singh, “Modeling for the use of waste materials (Bottom ash and fly ash) in soil stabilization,” Mater Today Proc, vol. 33, pp. 1610–1614, Jan. 2020, doi: 10.1016/J.MATPR.2020.05.569. [CrossRef] [Google Scholar]
  3. K. Kumar et al., “From Homogeneity to Heterogeneity: Designing Functionally Graded Materials for Advanced Engineering Applications,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01198. [Google Scholar]
  4. M. Z. ul Haq et al., “Waste Upcycling in Construction: Geopolymer Bricks at the Vanguard of Polymer Waste Renaissance,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01205. [Google Scholar]
  5. M. Z. ul Haq et al., “Eco-Friendly Building Material Innovation: Geopolymer Bricks from Repurposed Plastic Waste,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01201. [Google Scholar]
  6. S. Deep, S. Banerjee, S. Dixit, and N. I. Vatin, “Critical Factors Influencing the Performance of Highway Projects: Empirical Evaluation of Indian Projects,” Buildings, vol. 12, no. 6, Jun. 2022, doi: 10.3390/BUILDINGS12060849. [CrossRef] [Google Scholar]
  7. P. Singh et al., “Development of performance-based models for green concrete using multiple linear regression and artificial neural network,” International Journal on Interactive Design and Manufacturing, 2023, doi: 10.1007/S12008-023-01386-6. [Google Scholar]
  8. Y. Kaushik, V. Verma, K. K. Saxena, C. Prakash, L. R. Gupta, and S. Dixit, “Effect of Al2O3 Nanoparticles on Performance and Emission Characteristics of Diesel Engine Fuelled with Diesel–Neem Biodiesel Blends,” Sustainability (Switzerland), vol. 14, no. 13, Jul. 2022, doi: 10.3390/SU14137913. [Google Scholar]
  9. Y. Kuppusamy et al., “Artificial Neural Network with a Cross-Validation Technique to Predict the Material Design of Eco-Friendly Engineered Geopolymer Composites,” Materials, vol. 15, no. 10, May 2022, doi: 10.3390/MA15103443. [Google Scholar]
  10. K. Zheng Yang et al., “Application of coolants during tool-based machining – A review,” Ain Shams Engineering Journal, 2022, doi: 10.1016/J.ASEJ.2022.101830. [Google Scholar]
  11. S. Lee, Y. Chung, S. Kim, Y. Jeong, and M. S. Kim, “Predictive optimization method for the waste heat recovery strategy in an electric vehicle heat pump system,” Appl Energy, vol. 333, Mar. 2023, doi: 10.1016/j.apenergy.2022.120572. [Google Scholar]
  12. “Enhancing Electric Vehicle Efficiency through Model Predictive Control of Power Electronics – Search | ScienceDirect.com.” Accessed: Jan. 05, 2024. [Online]. Available: https://www.sciencedirect.com/search?qs=Enhancing%20Electric%20Vehicle%20Efficiency%20through%20Model%20Predictive%20Control%20of%20Power%20Electronics [Google Scholar]
  13. R. Srikakulapu et al., “Modelling farm-based electric vehicles on charging systems for power distribution networks with dynamic grid interactions,” Ain Shams Engineering Journal, vol. 14, no. 8, Aug. 2023, doi: 10.1016/j.asej.2022.102046. [CrossRef] [Google Scholar]
  14. R. T. Kumar and C. C. A. Rajan, “Integration of hybrid PV-wind system for electric vehicle charging: Towards a sustainable future,” e-Prime – Advances in Electrical Engineering, Electronics and Energy, vol. 6, p. 100347, Dec. 2023, doi: 10.1016/j.prime.2023.100347. [CrossRef] [Google Scholar]
  15. M. N. Tasnim, S. Akter, M. Shahjalal, T. Shams, P. Davari, and A. Iqbal, “A critical review of the effect of light duty electric vehicle charging on the power grid,” Energy Reports, vol. 10, pp. 4126–4147, Nov. 2023, doi: 10.1016/j.egyr.2023.10.075. [CrossRef] [Google Scholar]
  16. J. Zachariae, M. Tiesler, R. Singh, T. A. Benning, and C. Schweikert, “Silicon carbide based traction inverter cooling in electric vehicle using heat pipes,” Thermal Science and Engineering Progress, vol. 46, Dec. 2023, doi: 10.1016/j.tsep.2023.102155. [CrossRef] [Google Scholar]
  17. H. Li, X. Li, J. Jin, H. Yao, Z. Jiao, and J. Liu, “μ-Synthesis robust coordinated control of variable speed wind power generators and electric vehicles to regulate frequency,” Energy Reports, vol. 9, pp. 584–595, Sep. 2023, doi: 10.1016/j.egyr.2023.04.123. [CrossRef] [Google Scholar]
  18. M. Subbarao, K. Dasari, S. S. Duvvuri, K. R. K. V. Prasad, B. K. Narendra, and V. B. Murali Krishna, “Design, control and performance comparison of PI and ANFIS controllers for BLDC motor driven electric vehicles,” Measurement: Sensors, vol. 31, p. 101001, Feb. 2024, doi: 10.1016/J.MEASEN.2023.101001. [CrossRef] [Google Scholar]
  19. W. Wang et al., “A new vehicle specific power method based on internally observable variables: Application to CO2 emission assessment for a hybrid electric vehicle,” Energy Convers Manag, vol. 286, Jun. 2023, doi: 10.1016/j.enconman.2023.117050. [CrossRef] [Google Scholar]
  20. R. Saravanan, O. Sobhana, M. Lakshmanan, and P. Arulkumar, “Fuel cell electric vehicles equipped with energy storage system for energy management: A hybrid JS-RSA approach,” J Energy Storage, vol. 72, Nov. 2023, doi: 10.1016/j.est.2023.108646. [CrossRef] [Google Scholar]
  21. H. Alqahtani and G. Kumar, “Machine learning for enhancing transportation security: A comprehensive analysis of electric and flying vehicle systems,” Eng Appl Artif Intell, vol. 129, Mar. 2024, doi: 10.1016/j.engappai.2023.107667. [CrossRef] [Google Scholar]
  22. C. Dong et al., “Hybrid process model and smart policy network of electric-vehicle resources for instantaneous power flow imbalances,” Appl Energy, vol. 314, May 2022, doi: 10.1016/j.apenergy.2022.118531. [CrossRef] [Google Scholar]
  23. H. Jondhle, A. B. Nandgaonkar, S. Nalbalwar, and S. Jondhle, “An artificial intelligence and improved optimization-based energy management system of battery-fuel cell-ultracapacitor in hybrid electric vehicles,” J Energy Storage, vol. 74, Dec. 2023, doi: 10.1016/j.est.2023.109079. [CrossRef] [Google Scholar]
  24. A. S. Mohammed, S. M. Atnaw, A. O. Salau, and J. N. Eneh, “Review of optimal sizing and power management strategies for fuel cell/battery/super capacitor hybrid electric vehicles,” Energy Reports, vol. 9, pp. 2213–2228, Dec. 2023, doi: 10.1016/j.egyr.2023.01.042. [CrossRef] [Google Scholar]
  25. J. Y. Kim, G. T. Kim, J. Kim, H. Jeong, J. Park, and T. Kim, “The effect of a dual condensing system on the driving range for battery electric vehicles,” Case Studies in Thermal Engineering, p. 103913, Dec. 2023, doi: 10.1016/J.CSITE.2023.103913. [Google Scholar]
  26. A. G. Olabi et al., “Battery electric vehicles: Progress, power electronic converters, strength (S), weakness (W), opportunity (O), and threats (T),” International Journal of Thermofluids, vol. 16, Nov. 2022, doi: 10.1016/j.ijft.2022.100212. [Google Scholar]
  27. T. Barker, A. Ghosh, C. Sain, F. Ahmad, and L. Al-Fagih, “Efficient ANFIS-Driven Power Extraction and Control Strategies for PV-BESS Integrated Electric Vehicle Charging Station,” Renewable Energy Focus, vol. 48, p. 100523, Mar. 2024, doi: 10.1016/J.REF.2023.100523. [CrossRef] [Google Scholar]
  28. J. Hou, C. Hu, S. Lei, and Y. Hou, “Cyber resilience of power electronics-enabled power systems: A review,” Renewable and Sustainable Energy Reviews, vol. 189, Jan. 2024, doi: 10.1016/j.rser.2023.114036. [Google Scholar]
  29. M. Gobbi, A. Sattar, R. Palazzetti, and G. Mastinu, “Traction motors for electric vehicles: Maximization of mechanical efficiency – A review,” Appl Energy, vol. 357, p. 122496, Mar. 2024, doi: 10.1016/J.APENERGY.2023.122496. [CrossRef] [Google Scholar]
  30. Q. Hu, M. R. Amini, A. Wiese, J. B. Seeds, I. Kolmanovsky, and J. Sun, “Electric Vehicle Enhanced Fast Charging Enabled by Battery Thermal Management and Model Predictive Control,” IFAC-PapersOnLine, vol. 56, no. 2, pp. 10684–10689, 2023, doi: 10.1016/J.IFACOL.2023.10.721. [CrossRef] [Google Scholar]
  31. A. B. Çolak, “A new study on the prediction of the effects of road gradient and coolant flow on electric vehicle battery power electronics components using machine learning approach,” J Energy Storage, vol. 70, Oct. 2023, doi: 10.1016/j.est.2023.108101. [Google Scholar]
  32. S. Mateen, M. Amir, A. Haque, and F. I. Bakhsh, “Ultra-fast charging of electric vehicles: A review of power electronics converter, grid stability and optimal battery consideration in multi-energy systems,” Sustainable Energy, Grids and Networks, vol. 35, Sep. 2023, doi: 10.1016/j.segan.2023.101112. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.