Open Access
Issue
MATEC Web Conf.
Volume 392, 2024
International Conference on Multidisciplinary Research and Sustainable Development (ICMED 2024)
Article Number 01168
Number of page(s) 11
DOI https://doi.org/10.1051/matecconf/202439201168
Published online 18 March 2024
  1. O. A. AlKawak, J. R. R. Kumar, S. S. Daniel, and C. V. K. Reddy, “Hybrid method based energy management of electric vehicles using battery-super capacitor energy storage,” J Energy Storage, vol. 77, Jan. 2024, doi: 10.1016/j.est.2023.109835. [CrossRef] [Google Scholar]
  2. S. Lee, Y. Chung, S. Kim, Y. Jeong, and M. S. Kim, “Predictive optimization method for the waste heat recovery strategy in an electric vehicle heat pump system,” Appl Energy, vol. 333, Mar. 2023, doi: 10.1016/j.apenergy.2022.120572. [Google Scholar]
  3. “Enhancing Electric Vehicle Efficiency through Model Predictive Control of Power Electronics – Search | ScienceDirect.com.” Accessed: Jan. 05, 2024. [Online]. Available: https://www.sciencedirect.com/search?qs=Enhancing%20Electric%20Vehicle%20Efficiency%20through%20Model%20Predictive%20Control%20of%20Power%20Electronics [Google Scholar]
  4. P. Meenalochini, P. R.A., R. Pugalenthi, and J. A., “Energy management of grid connected PV with efficient inverter based wireless electric vehicle battery charger: A hybrid CSA-QNN technique,” J Energy Storage, vol. 80, p. 110255, Mar. 2024, doi: 10.1016/J.EST.2023.110255. [CrossRef] [Google Scholar]
  5. R. Srikakulapu et al., “Modelling farm-based electric vehicles on charging systems for power distribution networks with dynamic grid interactions,” Ain Shams Engineering Journal, vol. 14, no. 8, Aug. 2023, doi: 10.1016/j.asej.2022.102046. [CrossRef] [Google Scholar]
  6. R. T. Kumar and C. C. A. Rajan, “Integration of hybrid PV-wind system for electric vehicle charging: Towards a sustainable future,” e-Prime – Advances in Electrical Engineering, Electronics and Energy, vol. 6, p. 100347, Dec. 2023, doi: 10.1016/j.prime.2023.100347. [CrossRef] [Google Scholar]
  7. A. S. Mohammed, A. Olalekan Salau, B. Sigweni, and A. M. Zungeru, “Conversion and performance evaluation of petrol engine to electric powered three-wheeler vehicle with an onboard solar charging system,” Energy Conversion and Management: X, vol. 20, Oct. 2023, doi: 10.1016/j.ecmx.2023.100427. [CrossRef] [Google Scholar]
  8. M. N. Tasnim, S. Akter, M. Shahjalal, T. Shams, P. Davari, and A. Iqbal, “A critical review of the effect of light duty electric vehicle charging on the power grid,” Energy Reports, vol. 10, pp. 4126–4147, Nov. 2023, doi: 10.1016/j.egyr.2023.10.075. [CrossRef] [Google Scholar]
  9. S. C and S. J. C, “Energy management of hybrid energy storage system in electric vehicle based on hybrid SCSO-RERNN approach,” J Energy Storage, vol. 78, Feb. 2024, doi: 10.1016/j.est.2023.109733. [Google Scholar]
  10. J. Zachariae, M. Tiesler, R. Singh, T. A. Benning, and C. Schweikert, “Silicon carbide based traction inverter cooling in electric vehicle using heat pipes,” Thermal Science and Engineering Progress, vol. 46, Dec. 2023, doi: 10.1016/j.tsep.2023.102155. [CrossRef] [Google Scholar]
  11. H. Li, X. Li, J. Jin, H. Yao, Z. Jiao, and J. Liu, “μ-Synthesis robust coordinated control of variable speed wind power generators and electric vehicles to regulate frequency,” Energy Reports, vol. 9, pp. 584–595, Sep. 2023, doi: 10.1016/j.egyr.2023.04.123. [CrossRef] [Google Scholar]
  12. M. Subbarao, K. Dasari, S. S. Duvvuri, K. R. K. V. Prasad, B. K. Narendra, and V. B. Murali Krishna, “Design, control and performance comparison of PI and ANFIS controllers for BLDC motor driven electric vehicles,” Measurement: Sensors, vol. 31, p. 101001, Feb. 2024, doi: 10.1016/J.MEASEN.2023.101001. [CrossRef] [Google Scholar]
  13. W. Wang et al., “A new vehicle specific power method based on internally observable variables: Application to CO2 emission assessment for a hybrid electric vehicle,” Energy Convers Manag, vol. 286, Jun. 2023, doi: 10.1016/j.enconman.2023.117050. [CrossRef] [Google Scholar]
  14. R. Saravanan, O. Sobhana, M. Lakshmanan, and P. Arulkumar, “Fuel cell electric vehicles equipped with energy storage system for energy management: A hybrid JS-RSA approach,” J Energy Storage, vol. 72, Nov. 2023, doi: 10.1016/j.est.2023.108646. [CrossRef] [Google Scholar]
  15. H. Alqahtani and G. Kumar, “Machine learning for enhancing transportation security: A comprehensive analysis of electric and flying vehicle systems,” Eng Appl Artif Intell, vol. 129, Mar. 2024, doi: 10.1016/j.engappai.2023.107667. [CrossRef] [Google Scholar]
  16. C. Dong et al., “Hybrid process model and smart policy network of electric-vehicle resources for instantaneous power flow imbalances,” Appl Energy, vol. 314, May 2022, doi: 10.1016/j.apenergy.2022.118531. [CrossRef] [Google Scholar]
  17. H. Jondhle, A. B. Nandgaonkar, S. Nalbalwar, and S. Jondhle, “An artificial intelligence and improved optimization-based energy management system of battery-fuel cell-ultracapacitor in hybrid electric vehicles,” J Energy Storage, vol. 74, Dec. 2023, doi: 10.1016/j.est.2023.109079. [CrossRef] [Google Scholar]
  18. A. S. Mohammed, S. M. Atnaw, A. O. Salau, and J. N. Eneh, “Review of optimal sizing and power management strategies for fuel cell/battery/super capacitor hybrid electric vehicles,” Energy Reports, vol. 9, pp. 2213–2228, Dec. 2023, doi: 10.1016/j.egyr.2023.01.042. [CrossRef] [Google Scholar]
  19. J. Y. Kim, G. T. Kim, J. Kim, H. Jeong, J. Park, and T. Kim, “The effect of a dual condensing system on the driving range for battery electric vehicles,” Case Studies in Thermal Engineering, p. 103913, Dec. 2023, doi: 10.1016/J.CSITE.2023.103913. [Google Scholar]
  20. A. G. Olabi et al., “Battery electric vehicles: Progress, power electronic converters, strength (S), weakness (W), opportunity (O), and threats (T),” International Journal of Thermofluids, vol. 16, Nov. 2022, doi: 10.1016/j.ijft.2022.100212. [Google Scholar]
  21. T. Barker, A. Ghosh, C. Sain, F. Ahmad, and L. Al-Fagih, “Efficient ANFIS-Driven Power Extraction and Control Strategies for PV-BESS Integrated Electric Vehicle Charging Station,” Renewable Energy Focus, vol. 48, p. 100523, Mar. 2024, doi: 10.1016/J.REF.2023.100523. [CrossRef] [Google Scholar]
  22. J. Hou, C. Hu, S. Lei, and Y. Hou, “Cyber resilience of power electronics-enabled power systems: A review,” Renewable and Sustainable Energy Reviews, vol. 189, Jan. 2024, doi: 10.1016/j.rser.2023.114036. [Google Scholar]
  23. M. Gobbi, A. Sattar, R. Palazzetti, and G. Mastinu, “Traction motors for electric vehicles: Maximization of mechanical efficiency – A review,” Appl Energy, vol. 357, p. 122496, Mar. 2024, doi: 10.1016/J.APENERGY.2023.122496. [CrossRef] [Google Scholar]
  24. Q. Hu, M. R. Amini, A. Wiese, J. B. Seeds, I. Kolmanovsky, and J. Sun, “Electric Vehicle Enhanced Fast Charging Enabled by Battery Thermal Management and Model IFAC-PapersOnLine, vol. 56, no. 2, pp. 10684–10689, 2023, doi: 10.1016/J.IFACOL.2023.10.721. [CrossRef] [Google Scholar]
  25. A. B. Çolak, “A new study on the prediction of the effects of road gradient and coolant flow on electric vehicle battery power electronics components using machine learning approach,” J Energy Storage, vol. 70, Oct. 2023, doi: 10.1016/j.est.2023.108101. [Google Scholar]
  26. A. Saood et al., “Influence of Fiber Angle on Steady-State Response of Laminated Composite Rectangular Plates,” Materials, vol. 15, no. 16, Aug. 2022, doi: 10.3390/MA15165559. [CrossRef] [Google Scholar]
  27. S. Subramaniam et al., “Artificial Intelligence Technologies for Forecasting Air Pollution and Human Health: A Narrative Review,” Sustainability (Switzerland), vol. 14, no. 16, Aug. 2022, doi: 10.3390/SU14169951. [Google Scholar]
  28. K. M. Agarwal et al., “Optimization of die design parameters in ECAP for sustainable manufacturing using response surface methodology,” International Journal on Interactive Design and Manufacturing, 2023, doi: 10.1007/S12008-023-01365-X. [Google Scholar]
  29. L. Mishra, S. Dixit, R. Nangia, K. Saurabh, K. Kumar, and K. Sharma, “A brief review on segregation of solid wastes in Indian region,” Mater Today Proc, vol. 69, pp. 419–424, Jan. 2022, doi: 10.1016/J.MATPR.2022.09.070. [CrossRef] [Google Scholar]
  30. S. Dixit et al., “Comparison of theoretical and experimental physio-mechanical properties of coal-fly ash (CFA) reinforced iron matrix composites,” International Journal on Interactive Design and Manufacturing, Oct. 2022, doi: 10.1007/S12008-022-01022-9. [Google Scholar]
  31. Md. Z. ul Haq, H. Sood, and R. Kumar, “Effect of using plastic waste on mechanical properties of fly ash based geopolymer concrete,” Mater Today Proc, 2022. [Google Scholar]
  32. A. Kumar, N. Mathur, V. S. Rana, H. Sood, and M. Nandal, “Sustainable effect of polycarboxylate ether based admixture: A meticulous experiment to hardened concrete,” Mater Today Proc, 2022. [Google Scholar]
  33. M. Nandal, H. Sood, P. K. Gupta, and M. Z. U. Haq, “Morphological and physical characterization of construction and demolition waste,” Mater Today Proc, 2022. [Google Scholar]
  34. Md. Z. U. Haq, H. Sood, R. Kumar, and I. Merta, “Taguchi-optimized triple-aluminosilicate geopolymer bricks with recycled sand: A sustainable construction solution,” Case Studies in Construction Materials, vol. 20, p. e02780, 2024, doi: https://doi.org/10.1016/j.cscm.2023.e02780. [Google Scholar]
  35. V. Sharma and S. Singh, “Modeling for the use of waste materials (Bottom ash and fly ash) in soil stabilization,” Mater Today Proc, vol. 33, pp. 1610–1614, Jan. 2020, doi: 10.1016/J.MATPR.2020.05.569. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.