Open Access
Issue |
MATEC Web Conf.
Volume 392, 2024
International Conference on Multidisciplinary Research and Sustainable Development (ICMED 2024)
|
|
---|---|---|
Article Number | 01140 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/matecconf/202439201140 | |
Published online | 18 March 2024 |
- S.M. Mirmohseni, C. Tang, A. Javadpour. Using Markov learning utilization model for resource allocation in cloud of thing network. Wirel. Pers. Commun., 115, 653-677, (2020) [CrossRef] [Google Scholar]
- A. Katal, S. Dahiya, T. Choudhury. Energy efficiency in cloud computing data centers: a survey on software technologies. Cluster Comput., 26, 3, 1845-1875, (2023) [CrossRef] [Google Scholar]
- V.K. Sharma, A. Singh, K.R. Jaya, A.K. Bairwa, D.K. Srivastava. Introduction to virtualization in cloud computing. In Machine Learning and Optimization Models for Optimization in Cloud, Chapman and Hall/CRC, 1-14, (2022) [Google Scholar]
- H. Shukur, S. Zeebaree, R. Zebari, D. Zeebaree, O. Ahmed, A. Salih. Cloud computing virtualization of resources allocation for distributed systems. J. Appl. Res. Technol. Tren., 1, 3, 98-105, (2020) [CrossRef] [Google Scholar]
- R. Zolfaghari, A. Sahafi, A.M. Rahmani, R. Rezaei. Application of virtual machine consolidation in cloud computing systems. Sustain. Comput.: Inform. Syst., 30, (2021) [Google Scholar]
- R. Zolfaghari, A.M. Rahmani. Virtual machine consolidation in cloud computing systems: Challenges and future trends. Wirel. Pers. Commun., 115, 3, 2289-2326, 2020. [CrossRef] [Google Scholar]
- D. Selvapandian, R. Santosh. A Hybrid Optimized Resource Allocation Model for Multi-Cloud Environment Using Bat and Particle Swarm Optimization Algorithms. Comput. Assist. Methods Eng. Sci., 29, 1–2, 87-103, (2022) [Google Scholar]
- V. Ramasamy, S. Thalavai Pillai. An effective HPSO-MGA optimization algorithm for dynamic resource allocation in cloud environment. Cluster Comput., 23, 1711-1724, (2020) [CrossRef] [Google Scholar]
- K. Shao, H. Fu, B. Wang. An efficient combination of genetic algorithm and particle swarm optimization for scheduling data-intensive tasks in heterogeneous cloud computing. Electronics, 12, 16, (2023) [Google Scholar]
- H. Hafsi, H. Gharsellaoui, S. Bouamama. Genetically-modified Multi-objective Particle Swarm Optimization approach for high-performance computing workflow scheduling. Appl. Soft Comput., 122, (2022) [Google Scholar]
- T. Alfakih, M.M. Hassan, M. Al-Razgan. Multi-objective accelerated particle swarm optimization with dynamic programing technique for resource allocation in mobile edge computing. IEEE Access, 9, 167503-167520, (2021) [CrossRef] [Google Scholar]
- S.M. Mirmohseni, A. Javadpour, C. Tang. LBPSGORA: create load balancing with particle swarm genetic optimization algorithm to improve resource allocation and energy consumption in clouds networks. Math. Probl. Eng., 1-15, (2021) [Google Scholar]
- P. Pirozmand, H. Jalalinejad, A.A.R. Hosseinabadi, S. Mirkamali, Y. Li. An improved particle swarm optimization algorithm for task scheduling in cloud computing. J. Ambient Intell. Humaniz. Comput., 14, 4, 4313-4327, (2023) [CrossRef] [Google Scholar]
- T.C. Hung, L.N. Hieu, P.T. Hy, N.X. Phi. MMSIA: improved max-min scheduling algorithm for load balancing on cloud computing. In Proceedings of the 3rd International Conference on Machine Learning and Soft Computing, 60-64, (2019) [Google Scholar]
- D.I.J. Jacob, D.P.E. Darney. Artificial bee colony optimization algorithm for enhancing routing in wireless networks. J. Artif. Intell. Cap Netw., 3, 1, 62-71, (2021) [Google Scholar]
- S.U. Umar, T.A. Rashid. Critical analysis: bat algorithm-based investigation and application on several domains. World J. Eng., 18, 4, 606-620, (2021) [CrossRef] [Google Scholar]
- M.I. Alghamdi. Optimization of Load Balancing and Task Scheduling in Cloud Computing Environments Using Artificial Neural Networks-Based Binary Particle Swarm Optimization (BPSO). Sustainability, 14, 19, 11982, (2022) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.