Open Access
Issue
MATEC Web Conf.
Volume 392, 2024
International Conference on Multidisciplinary Research and Sustainable Development (ICMED 2024)
Article Number 01139
Number of page(s) 9
DOI https://doi.org/10.1051/matecconf/202439201139
Published online 18 March 2024
  1. https://www.who.int/news-room/fact-sheets/detail/breastcancer?gad_source=1&gclid=CjwKCAiA_tuuBhAUEiwAvxkgTvH4Z1kLTl83pml3SWLbKYHobut4LoFJF2uXYotTdanYXviyRC2o4RoCTmsQAvD_BwE [Google Scholar]
  2. S. Sharma, R. Mehra. Conventional machine learning and deep learning approach for multi-classification of breast cancer histopathology images—a comparative insight. J. Digit. Imaging, 33, 632-654, (2020) [CrossRef] [Google Scholar]
  3. M.L. Wilson, K.A. Fleming, M.A. Kuti, L.M. Looi, N. Lago, K. Ru. Access to pathology and laboratory medicine services: a crucial gap. The Lancet, 391, 10133, 1927-1938, (2018) [CrossRef] [Google Scholar]
  4. R. Krithiga, P. Geetha. Breast cancer detection, segmentation and classification on histopathology images analysis: a systematic review. Arch. Comput. Methods Eng., 28, 2607-2619, (2021) [CrossRef] [Google Scholar]
  5. F. Shahidi, S.M. Daud, H. Abas, N.A. Ahmad, N. Maarop. Breast cancer classification using deep learning approaches and histopathology image: a comparison study. IEEE Access, 8, 187531-187552, (2020) [CrossRef] [Google Scholar]
  6. M.R. Abbasniya, S.A. Sheikholeslamzadeh, H. Nasiri, S. Emami. Classification of breast tumors based on histopathology images using deep features and ensemble of gradient boosting methods. Comput. Electr. Eng., 103, 1-14, (2022) [Google Scholar]
  7. E.K. Jadoon, F.G. Khan, S. Shah, A. Khan, M. Elaffendi. Deep Learning-Based Multi-Modal Ensemble Classification Approach for Human Breast Cancer Prognosis. IEEE Access, 11, 85760-85769, (2023). [CrossRef] [Google Scholar]
  8. H. Kode, B.D. Barkana. Deep Learning-and Expert Knowledge-Based Feature Extraction and Performance Evaluation in Breast Histopathology Images. Cancers, 15, 12, 1-21, (2023). [Google Scholar]
  9. F. Demir. DeepBreastNet: A novel and robust approach for automated breast cancer detection from histopathological images. Biocybern. Biomed. Eng., 41, 3, 1123-1139, (2021) [CrossRef] [Google Scholar]
  10. I. Hirra, M. Ahmad, A. Hussain, M.U. Ashraf, I.A. Saeed, S.F. Qadri, Alfakeeh, A.S. Breast cancer classification from histopathological images using patch-based deep learning modeling. IEEE Access, 9, 24273-24287, (2021) [CrossRef] [Google Scholar]
  11. A. Das, M.N. Mohanty, P.K. Mallick, P. Tiwari, K. Muhammad, H. Zhu. Breast cancer detection using an ensemble deep learning method. Biomed. Signal Process. Control., 70, (2021) [Google Scholar]
  12. S. Sharmin, T. Ahammad, M.A. Talukder, P. Ghose. A hybrid dependable deep feature extraction and ensemble-based machine learning approach for breast cancer detection. IEEE Access, 11, 87694-87708, (2023) [CrossRef] [Google Scholar]
  13. P.T. Mooney. Breast Histopathology Images, (2021). Accessed: May 23, 2023. [Online]. https://www.kaggle.com/datasets/paultimothymooney/breast-histopathology-images [Google Scholar]
  14. H. Luo, F. Cheng, H. Yu, Y. Yi. SDTR: Soft decision tree regressor for tabular data. IEEE Access, 9, 55999-56011, (2021) [CrossRef] [Google Scholar]
  15. A. Correia, R. Peharz, C.P. de Campos. Joints in random forests. Adv. Neural Inf. Process. Syst., 33, 11404-11415, (2020) [Google Scholar]
  16. S. Heddam. Extremely randomized trees versus random forest, group method of data handling, and artificial neural network. In Handbook of Hydroinformatics, 291-304, (2023) Elsevier. [Google Scholar]
  17. J. Velthoen, C. Dombry, J.J. Cai, S. Engelke. Gradient boosting for extreme quantile regression. Extremes, 26, 4, 639-667, (2023) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.