Open Access
Issue
MATEC Web Conf.
Volume 392, 2024
International Conference on Multidisciplinary Research and Sustainable Development (ICMED 2024)
Article Number 01104
Number of page(s) 9
DOI https://doi.org/10.1051/matecconf/202439201104
Published online 18 March 2024
  1. S. Nooruddin, M.M. Islam, F.A. Sharna, H. Alhetari, M.N. Kabir. Sensor-based fall detection systems: a review. J Ambient Intell Humaniz Comput, 1-17, (2022) [Google Scholar]
  2. G. Cicirelli, R. Marani, A. Petitti, A. Milella, T. D’Orazio. Ambient assisted living: a review of technologies, methodologies and future perspectives for healthy aging of population. Sensors, 21, 10, 1-22, (2021) [Google Scholar]
  3. B. Alescio-Lautier, C. Chambon, C. Deshayes, J.L. Anton, G. Escoffier, M.H. Ferrer, V. Paban. Problem-solving training modifies cognitive functioning and related functional connectivity in healthy adults. Neuropsychol. Rehabil., 33, 1, 103-138, (2023) [CrossRef] [Google Scholar]
  4. E.M. Bloch, R. Goel, S. Wendel, T. Burnouf, A.Z. Al‐Riyami, A.L. Ang, C. So–Osman. Guidance for the procurement of COVID‐19 convalescent plasma: differences between high‐and low‐middle‐income countries. Vox Sang., 116, 1, 18-35, (2021) [Google Scholar]
  5. N. Kalita, K. Cooper, J. Baird, K. Woods-Townsend, K. Godfrey, C. Cooper, J. Lord. Cost-effectiveness of a dietary and physical activity intervention in adolescents: a prototype modelling study based on the Engaging Adolescents in Changing Behaviour (EACH-B) programme. BMJ Open, 12, 8, 1-11, (2022) [Google Scholar]
  6. S. Komarizadehasl, E. Delgado, G. Ramos, J. Turmo, J.L.G. Lozano-Galant. Laboratory validation of an Arduino-based accelerometer designed for SHM applications. In Life-Cycle of Structures and Infrastructure Systems, 415-421, (2023) CRC Press [Google Scholar]
  7. J. John, M.S. Varkey, R.S. Podder, N. Sensarma, M. Selvi, S.V.N. Santhosh Kumar, A. Kannan. Smart prediction and monitoring of waste disposal system using IoT and cloud for IoT-based smart cities. Wirel. Pers. Commun., 122, 1, 243-275, (2022) [CrossRef] [Google Scholar]
  8. D. Fozoonmayeh, H.V. Le, E. Wittfoth, C. Geng, N. Ha, J. Wang, D.M.K. Woodbridge. A scalable smartwatch-based medication intake detection system using distributed machine learning. J. Med. Syst., 44, 1-14, (2020) [CrossRef] [Google Scholar]
  9. H. Ponce, L. Martínez-Villaseñor, J. Nunez-Martinez. Sensor location analysis and minimal deployment for fall detection system. IEEE Access, 8, 166678-166691, (2020) [CrossRef] [Google Scholar]
  10. H. Raeis, M. Kazemi, S. Shirmohammadi. Human activity recognition with device-free sensors for well-being assessment in smart homes. IEEE Instrum. Meas. Mag., 24, 6, 46-57, (2021) [CrossRef] [Google Scholar]
  11. G.J. Horng, K.H. Chen. The smart fall detection mechanism for healthcare under freeliving conditions. Wirel. Pers. Commun., 118, 715-753, (2021) [CrossRef] [Google Scholar]
  12. E. Casilari, R. Lora-Rivera, F. García-Lagos. A study on the application of convolutional neural networks to fall detection evaluated with multiple public datasets. Sensors, 20, 5, 1-21, (2020) [Google Scholar]
  13. S. Nooruddin, M.M. Islam, F.A. Sharna, H. Alhetari, M.N. Kabir. Sensor-based fall detection systems: a review. J Ambient Intell Humaniz Comput., 1-17, (2022) [Google Scholar]
  14. D. Pan, H. Liu, D. Qu, Z. Zhang. Human falling detection algorithm based on multisensor data fusion with SVM. Mob. Inf. Syst., 2020, 1-9, (2020) [Google Scholar]
  15. V. Divya, R.L. Sri. Docker-based intelligent fall detection using edge-fog cloud infrastructure. IEEE Internet Things J., 8, 10, 8133-8144, (2020) [Google Scholar]
  16. M.M. Islam, O. Tayan, M.R. Islam, M.S. Islam, S. Nooruddin, M.N. Kabir, Islam, M.R. Deep learning-based systems developed for fall detection: a review. IEEE Access, 8, 166117-166137, (2020) [CrossRef] [Google Scholar]
  17. T.M. Le, L. Van Tran, S.V.T. Dao. A feature selection approach for fall detection using various machine learning classifiers. IEEE Access, 9, 115895-115908, (2021) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.