Open Access
Issue
MATEC Web Conf.
Volume 392, 2024
International Conference on Multidisciplinary Research and Sustainable Development (ICMED 2024)
Article Number 01103
Number of page(s) 9
DOI https://doi.org/10.1051/matecconf/202439201103
Published online 18 March 2024
  1. J. Pacheco, S. Hariri. Anomaly behavior analysis for IoT sensors. Trans. Emerg. Telecommun. Technol., 29, 4, (2018) [Google Scholar]
  2. M.A. Khan, K. Salah. IoT security: Review, blockchain solutions, and open challenges. Future Gener. Comput. Syst., 82, 395-411, (2018) [CrossRef] [Google Scholar]
  3. M.A. Lawal, R.A. Shaikh, S.R. Hassan. An anomaly mitigation framework for iot using fog computing. Electronics, 9, 10, (2020) [Google Scholar]
  4. N. Moustafa, J. Hu, J. Slay. A holistic review of network anomaly detection systems: A comprehensive survey. J. Netw. Comput. Appl., 128, 33-55, (2019) [CrossRef] [Google Scholar]
  5. S. Al-Mashhadi, M. Anbar, I. Hasbullah, T.A. Alamiedy. Hybrid rule-based botnet detection approach using machine learning for analysing DNS traffic. PeerJ Comput. Sci., 7, (2021) [Google Scholar]
  6. V. Simonovich. Imperva blocks our largest DDoS L7/brute force attack ever (peaking at 292,000 RPS), (2019) [Google Scholar]
  7. A. Woodiss-Field, M.N. Johnstone, P. Haskell-Dowland. Towards evaluating the effectiveness of botnet detection techniques. In International Conference on Ubiquitous Security, Singapore: Springer Singapore, 292-308, (2021) [Google Scholar]
  8. Q. Yaseen, F. Albalas, Y. Jararwah, M. Al‐Ayyoub. Leveraging fog computing and software defined systems for selective forwarding attacks detection in mobile wireless sensor networks. Trans. Emerg. Telecommun. Technol., 29, 4, (2018) [Google Scholar]
  9. Y. Labiod, A. Amara Korba, N. Ghoualmi. Fog computing-based intrusion detection architecture to protect iot networks. Wirel. Pers. Commun., 125, 1, 231-259, (2022) [CrossRef] [Google Scholar]
  10. C.A. De Souza, C.B. Westphall, R.B. Machado, L. Loffi, C.M. Westphall, G.A. Geronimo. Intrusion detection and prevention in fog based iot environments: A systematic literature review. Computer Networks, 214, (2022) [Google Scholar]
  11. W.B. Daoud, S. Mahfoudhi. SIMAD: Secure Intelligent Method for IoT-Fog Environments Attacks Detection. Comput. Mater. Contin., 70, 2, (2022) [Google Scholar]
  12. M.A. Lawal, R.A. Shaikh, S.R. Hassan. A DDoS attack mitigation framework for IoT networks using fog computing. Procedia Comput. Sci., 182, 13-20, (2021) [CrossRef] [Google Scholar]
  13. S.R. Zahra, M.A. Chishti. Fuzzy logic and fog based secure architecture for internet of things (flfsiot). J. Ambient Intell. Humaniz. Comput., 1-25, (2020) [Google Scholar]
  14. A.K. Junejo, N. Komninos, J.A. McCann. A Secure Integrated Framework for Fog-Assisted Internet-of-Things Systems. IEEE Internet Things J., 8, 8, 6840-6852, (2020) [Google Scholar]
  15. S.R. Zahra, M.A. Chishti. A generic and lightweight security mechanism for detecting malicious behavior in the uncertain Internet of Things using fuzzy logic-and fog-based approach. Neural Comput. Appl., 34, 9, 6927-6952, (2022) [CrossRef] [Google Scholar]
  16. A. Samy, H. Yu, H. Zhang. Fog-based attack detection framework for Internet of things using deep learning. IEEE Access, 8, 74571-74585, (2020) [CrossRef] [Google Scholar]
  17. N. Moustafa, J. Slay, (2015). UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set). In military communications and information systems conference (MilCIS), 1-6, (2015) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.