Open Access
Issue
MATEC Web Conf.
Volume 392, 2024
International Conference on Multidisciplinary Research and Sustainable Development (ICMED 2024)
Article Number 01030
Number of page(s) 21
DOI https://doi.org/10.1051/matecconf/202439201030
Published online 18 March 2024
  1. Bononi, M. ; Giovanardi, R. Hard anodizing of AA2011-T3 Al-Cu-Pb-Bi free-cutting alloy: Improvement of the process parameters. Corros. Sci. 2018, 141, 63–71. [CrossRef] [Google Scholar]
  2. Won, S. ; Seo, B. ; Park, J.M. ; Kim, H.K. ; Song, K.H. ; Min, S.H. ; Ha, T.K. ; Park, K. Corrosion behaviors of friction welded dissimilar aluminum alloys. Mater. Charact. 2018, 144, 652–660. [CrossRef] [Google Scholar]
  3. Murayama, Mitsuhiro & Hono, Kazuhiro & Saga, M & Kikuchi, Masao. (1999). Atom probe studies on the early stages of precipitation in Al–Mg–Si alloys. Materials Science and Engineering: A. 250. 127-132. [CrossRef] [Google Scholar]
  4. Li, Saiyi & Beyerlein, Irene & Bourke, Mark. (2005). Texture formation during equal channel angular extrusion of fcc and bcc materials: Comparison with simple shear. Materials Science and Engineering: A. 394. 66-77. [CrossRef] [Google Scholar]
  5. Stolyarov, Vladimir & Lapovok, Rimma & Brodova, I.G. & Thomson, Peter. (2003). Ultrafine-grained Al–5 wt.% Fe alloy processed by ECAP with backpressure. Materials Science and Engineering: A. 357. 159-167. [CrossRef] [Google Scholar]
  6. Edwards, G.A. & Stiller, Krystyna & Dunlop, G. & Couper, Malcolm. (1998). The Precipitation Sequence in Al-Mg-Si Alloys. Acta Materialia. 46. 3893-3904. [CrossRef] [Google Scholar]
  7. Lapovok, Rimma. (2005). The role of back-pressure in equal channel angular extrusion. Journal of Materials Science. 40. 341-346. [CrossRef] [Google Scholar]
  8. Takeda, Mahoto & Ohkubo, F & Shirai, T & Fukui, K. (1998). Stability of metastable phases and microstructures in the ageing process of Al–Mg–Si ternary alloys. Journal of Materials Science. 33. 2385-2390. [CrossRef] [Google Scholar]
  9. Valiev, R. & Gertsman, V. & Kaibyshev, O.. (1986). Grain Boundary Structure and Properties Under External Influences. physica status solidi (a). 97. 11 –56. [CrossRef] [Google Scholar]
  10. Höppel, Heinz & May, J. & Göken, Mathias. (2004). Enhanced Strength and Ductility in Ultrafine‐Grained Aluminium Produced by Accumulative Roll Bonding. Advanced Engineering Materials. 6. 781 –784. [CrossRef] [Google Scholar]
  11. Chuvil’deev, Vladimir. (2002). Une théorie des joints de grains hors d’équilibre et ses applications aux matériaux nano et microcristallins obtenus par extrusion dans des canaux déviés. Annales De Chimie-science Des Materiaux – ANN CHIM-SCI MAT. 27. 55-64. [CrossRef] [Google Scholar]
  12. Mckenzie, P. & Lapovok, Rimma. (2010). ECAP with back pressure for optimum strength and ductility in aluminium alloy 6016. Part 2: Mechanical properties and texture. Acta Materialia – ACTA MATER. 58. 3212-3222. [CrossRef] [Google Scholar]
  13. Hasani, Arman & Lapovok, Rimma & Tóth, László & Molinari, Alain. (2008). Deformation field variations in equal channel angular extrusion due to back pressure. Scripta Materialia – SCRIPTA MATER. 58. 771-774. [CrossRef] [Google Scholar]
  14. Hirth, S.M & Marshall, G.J & Court, Sarabjeet & Lloyd, D.J. (2001). Effect of Si on the Aging Behaviour and Formability of Alloys Based on AA6016. Materials Science and Engineering: A. s 319–321. 452–456. [CrossRef] [Google Scholar]
  15. Arzaghi, Mandana & Beausir, Benoit & Tó, L. (2009). Contribution of non-octahedral slip to texture evolution of FCC polycrystals in simple shear. Acta Materialia. 57. 2240-2453. [Google Scholar]
  16. Mughrabi, Hael & Höppel, Heinz & Kautz, M. & Valiev, Ruslan. (2003). Annealing treatments to enhance thermal and mechanical stability of ultrafine-grained metals produced by severe plastic deformation. Zeitschrift für Metallkunde. 94. 1079-1083. [CrossRef] [Google Scholar]
  17. Cabibbo, M. & Evangelista, Enrico & Vedani, Maurizio. (2005). Influence of severe plastic deformations on secondary phase precipitation in a 6082 Al-Mg-Si alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science. 36. 1353-1364. [CrossRef] [Google Scholar]
  18. Tóth, L.S.. (2003). Texture Evolution in Severe Plastic Deformation by Equal Channel Angular Extrusion. Advanced Engineering Materials. 5. 308-316. [CrossRef] [Google Scholar]
  19. Li, Saiyi & Beyerlein, Irene & Alexander, David & Vogel, Sven. (2005). Texture evolution during equal channel angular extrusion: Effect of initial texture from experiment and simulation. Scripta Materialia – SCRIPTA MATER. 52. 1099-1104. [CrossRef] [Google Scholar]
  20. Hirsch, Juergen. (2009). Hot Formability and Texture Formation in Al Alloys. Materials Science Forum – MATER SCI FORUM. 604-605. 259-266. [Google Scholar]
  21. Zhang, Yuhua. (2004). New approach to profile generation of disk cam mechanisms. Chinese Journal of Mechanical Engineering – CHIN J MECH ENG. 40. [Google Scholar]
  22. Mckenzie, P.W.J. & Lapovok, Rimma. (2010). ECAP with back pressure for optimum strength and ductility in aluminium alloy 6016. Part 1: Microstructure. Acta Materialia – ACTA MATER. 58. 3198-3211. [CrossRef] [Google Scholar]
  23. Tsuji, Nobuhiro & Ito, Y & Saito, Y & Minamino, Yoritoshi. (2002). Strength and Ductility of Ultrafine Grained Aluminum and Iron Produced by ARB and Annealing. Scripta Materialia – SCRIPTA MATER. 47. 893-899. [CrossRef] [Google Scholar]
  24. Beyerlein, Irene & Tóth, László. (2009). Texture Evolution in Equal-Channel Angular Extrusion. Progress in Materials Science – PROG MATER SCI. 54. 427-510. [CrossRef] [Google Scholar]
  25. Zhang, Y.-S & Zhou, Y. & Jin, Q.-L. (2004). Superplasticity of Commercial 5182 and 6016 Commercial Aluminium Alloys. Transactions of Materials and Heat Treatment. 25. 35-41. [Google Scholar]
  26. Fouad, D.M. ; El-Garaihy,W.H. ; Ahmed, M.M.Z. ; El-Sayed Seleman, M.M. ; Salem, H.G. Influence of multi-channel spiral twist extrusion (MCSTE) processing on structural evolution, crystallographic texture and mechanical properties of AA1100. Mater. Sci. Eng. A 2018, 737, 166–175. [CrossRef] [Google Scholar]
  27. M Saravanan, R M Pillai *, B C Pai, M Brahma kumar and K R Ravi Equal channel angular pressing of pure aluminium—an analysis‖, Bull. Mater. Sci., Vol. 29, No. 7, 679–684, (2006). [Google Scholar]
  28. Hu Hong-Jun *, Zhang Ding Fei, Yang Ming Bo The die structure design of equal channel angular extrusion for AZ31 magnesium alloy based on three-dimensional finite element method, Materials and Design, 30, pp. 2831–2840 (2009). [CrossRef] [Google Scholar]
  29. A.V.Nagasekhar, Yip Tick-Hon, H.P. Seow, Deformation behavior and strain homogeneity in equal channel angular extrusion/pressing, Journal of Materials Processing Technology, 192–193, 449–452 (2007). [CrossRef] [Google Scholar]
  30. S.C. Yoon, P. Quang, S.I. Hong, H.S. Kim Die design for homogeneous plastic deformation during equal channel angular pressing, Journal of Materials Processing Technology, 187–188, 46–50 (2007). [CrossRef] [Google Scholar]
  31. Hyoung Seop Kim, Pham Quang, Min Hong Seo, Sun Ig Hong, Kyeong Ho Baik, Hong Rho Lee and Do Minh Nghiep, “Process Modelling of Equal Channel Angular Pressing for Ultrafine Grained Materials”, Materials Transactions, Vol. 45, No. 7, 2172 –2176 (2004). [CrossRef] [Google Scholar]
  32. Sadasivan, N., S. Madhu, and M. Balasubramanian. “Acute angle ECAP die with modification for punchless back pressure provider.” Materials Today: Proceedings 22 (2020): 1228-1232. [CrossRef] [Google Scholar]
  33. Andreyachshenko, Violetta. “Evolution of Al-Si-Mn-Fe aluminum alloy microstructure in the equal-channel angular pressing with back pressure.” Materials letters 254 (2019): 433-435. [CrossRef] [Google Scholar]
  34. Comăneci, R. “Numerical analysis of back pressure equal channel angular pressing of an Al-Mg alloy.” IOP Conference Series: Materials Science and Engineering. Vol. 227. No. 1. IOP Publishing, 2017. [Google Scholar]
  35. Gudimetla, Kondaiah, et al. “Effect of Back Pressure on the Consolidation Behaviour of Titanium Sponge Particles Processed by ECAP.” Materials Science Forum. Vol. 969. Trans Tech Publications Ltd, 2019. [Google Scholar]
  36. Łyszkowski, Radosław, Wojciech Polkowski, and Tomasz Czujko. “Severe plastic deformation of Fe-22Al-5Cr alloy by cross-channel extrusion with back pressure.” Materials 11.11 (2018): 2214. [CrossRef] [Google Scholar]
  37. Shen, Jianghua, et al. “Residual stress and its effect on the mechanical properties of Ydoped Mg alloy fabricated via back-pressure assisted equal channel angular pressing (ECAP-BP).” Materials Science and Engineering: A 669 (2016): 110-117. [CrossRef] [Google Scholar]
  38. Onal, E., et al. “Effect of Processing Parameters on the Magnetic Properties and Macrotexture of a Nd 13.5 Fe 73.8 Co 6.7 B 5.6 Ga 0.4 Alloy Processed by Equal Channel Angular Pressing With Back Pressure.” IEEE Transactions on Magnetics 52.7 (2016): 1-4. [CrossRef] [Google Scholar]
  39. Li, Zhuoliang, Kenong Xia, and Hua Ding. “Consolidation of pure magnesium powder by equal-channel angular pressing with back pressure.” Journal of Materials Engineering and Performance 30 (2021): 2213-2219. [CrossRef] [Google Scholar]
  40. Quang, P. “The ECAP Process Simulation and Experiments with Different Back Pressures for Magnesium Alloy.” Journal of Physics: Conference Series. Vol. 2219. No. 1. IOP Publishing, 2022. [Google Scholar]
  41. Sankuru, Anil Babu, et al. “Effect of processing route on microstructure, mechanical and dry sliding wear behavior of commercially pure magnesium processed by ECAP with back pressure.” Transactions of the Indian Institute of Metals 74 (2021): 2659-2669. [CrossRef] [Google Scholar]
  42. Jäger, A., V. Gärtnerova, and K. Tesař. “Microstructure and anisotropy of the mechanical properties in commercially pure titanium after equal channel angular pressing with back pressure at room temperature.” Materials Science and Engineering: A 644 (2015): 114-120. [CrossRef] [Google Scholar]
  43. Sadasivan, N., et al. “Influence of equal channel angular pressing in an acute angle die with a back pressure notch on grain refinement, torsion and mechanical properties of aluminium.” Materialwissenschaft und Werkstofftechnik 50.2 (2019): 155-164. [CrossRef] [Google Scholar]
  44. Mogucheva, A., et al. “Microstructural evolution in a 5024 aluminum alloy processed by ECAP with and without back pressure.” Materials Science and Engineering: A 560 (2013): 178-192. [CrossRef] [Google Scholar]
  45. K. Kowalczyk, M.B. Jabłońska, M. Tkocz, R. Chulist, I. Bednarczyk, T. Rzychoń, Effect of the number of passes on grain refinement, texture and properties of DC01 steel strip processed by the novel hybrid SPD method, Archives of Civil and Mechanical Engineering 22 (2022) 115. https://doi.org/10.1007/s43452-022-00432-6. [CrossRef] [Google Scholar]
  46. X. Wang, Z. Xiao, X.P. Meng, Y.H. Yi, L. Chen, Microstructure and properties evolution of Cu-Ti-Cr-Mg alloy during equal channel angular pressing at room temperature and cryogenic temperature, J. Alloys Compd. 927 (2022) 166940. https://doi.org/10.1016/j.jallcom.2022.166940. [CrossRef] [Google Scholar]
  47. F. Caldatto Dalan, G.F. de Lima Andreani, D.N. Travessa, I.A. Faizov, S. Faizova, K.R. Cardoso, Effect of ECAP processing on distribution of second phase particles, hardness and electrical conductivity of Cu-0.81Cr−0.07Zr alloy, Transactions of Nonferrous Metals Society of China 32 (2022) 217-232. https://doi.org/10.1016/S1003-6326(21)65789-8. [CrossRef] [Google Scholar]
  48. H.S. Kim, Y.Kim, K.H.Song, Effect of post-heat-treatment in ECAP processed Cu-40%Zn brass. Journal of Alloys and Compounds 536 (2012) 200-203. https://doi.org/10.1016/j.jallcom.2011.11.079. [Google Scholar]
  49. H. R. Naser, M. M. Talib, AMH Aljassani, Influence of ECAP processing on mechanical and wear properties of brass alloy. Materials Today: Proceedings 44 (2021) 2399–2402. https://doi.org/10.1016/j.matpr.2020.12.461. [CrossRef] [Google Scholar]
  50. M. Demirtas, Microstructural, mechanical and tribological characterization of Cu-CoNi-Be alloy processed via equal channel angular pressing. Materials Today Communications 28 (2021) 102676 https://doi.org/10.1016/j.mtcomm.2021.102676. [CrossRef] [Google Scholar]
  51. E. Cagatay, Effect of severe plastic deformation on the precipitation kinetics and the properties of CuCoNiBe alloys. Materials Today Communications 31 (2022) 103473 https://doi.org/10.1016/j.mtcomm.2022.103473. [CrossRef] [Google Scholar]
  52. V.U. Kazykhanov, M.Y. Murashkin, Influence of deformation at elevated temperatures on stability of microstructure and mechanical properties of UFG aluminum alloy, Materials Letters 301 (2021) 130328. https://doi.org/10.1016/j.matlet.2021.130328. [CrossRef] [Google Scholar]
  53. C. Wang, A. Ma, J. Jiang, Effect of ECAP process on as-cast and as-homogenized MgAl-Ca-Mn alloys with different Mg2Ca morphologies, Journal of Alloys and Compounds 793 (2019) 259-270. https://doi.org/10.1016/j.jallcom.2019.04.202. [CrossRef] [Google Scholar]
  54. M. Ma et al. Development of homogeneity in a Cu-Mg-Ca alloy processed by equal channel angular pressing, Journal of Alloys and Compounds 11 (2019) 153112. https://doi.org/10.1016/j.jallcom.2019.153112. [Google Scholar]
  55. K. Abib et al, On the microstructure and texture of Cu-Cr-Zr alloy after severe plastic deformation by ECAP, Materials Characterization 112 (2016) 252-258. http://dx.doi.org/10.1016/j.matchar.2015.12.026. [CrossRef] [Google Scholar]
  56. M. Muzhi, Z. Li, W. Qiu et al. Microstructure and properties of Cu–Mg-Ca alloy processed by equal channel angular pressing, Journal of Alloys and Compounds, 788 (2019) 50-60. https://doi.org/10.1016/j.jallcom.2019.01.335. [CrossRef] [Google Scholar]
  57. J. Bursik, V. Bursikova, M. Svoboda, P. Kral, J. Dvorak, V. Sklenicka, Microstructure and local mechanical properties of Cu-Co alloys after severe plastic deformation, Key Engineering Materials 586 (2013) 100-103.https://doi.org/10.4028/www.scientific.net/KEM.586.100. [CrossRef] [Google Scholar]
  58. A. Bachmaier, J. Schmauch, H. Aboulfadl, A. Verch, C. Motz, On the process of codeformation and phase dissolution in a hard-soft immiscible CuCo alloy system during high-pressure torsion deformation, Acta Materialia 115 (2016) 333-346. https://doi.org/10.1016/j.actamat.2016.06.010. [CrossRef] [Google Scholar]
  59. A. Bachmaier, H. Aboulfadl, M. Pfaff, F. Mücklich, C. Motz, Structural evolution and strain induced mixing in Cu–Co composites studied by transmission electron microscopy and atom probe tomography, Materials Characterization 100 (2015) 178-191. https://doi.org/10.1016/j.matchar.2014.12.022. [CrossRef] [Google Scholar]
  60. K. Bartha, A. Veverková, J. Stráský, J. Veselý, M. Janeček, Effect of the severe plastic deformation by ECAP on microstructure and phase transformations in Ti-15Mo alloy Materials Today Communications 22 (2020) 100811. 10.1016/j.mtcomm.2019.10081121. [CrossRef] [Google Scholar]
  61. N.S.D. Vincentis, A. Kliauga, M. Ferrante, M Avalos, H.G. Brokmeier, R.E. Bolmaro, Evaluation of microstructure anisotropy on room and medium temperature ECAP deformed F138 steel, Materials Characterization 107 (2015) 98-111. https://doi.org/10.1016/j.matchar.2015.06.035. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.