Open Access
Issue |
MATEC Web Conf.
Volume 392, 2024
International Conference on Multidisciplinary Research and Sustainable Development (ICMED 2024)
|
|
---|---|---|
Article Number | 01028 | |
Number of page(s) | 22 | |
DOI | https://doi.org/10.1051/matecconf/202439201028 | |
Published online | 18 March 2024 |
- R.Z. Valiev, T. G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Prog. Mater. Sci. 51 (2006) 881-981, https://doi.org/10.1016/j.pmatsci.2006.02.003. [Google Scholar]
- Y.G. Jin, H.M. Baek, Y.T. Im, B.C. Jeon, Continuous ECAP process design for manufacturing a microstructure-refined bolt, Mater. Sci. Eng. A. 530 (2011) 462-468, https://doi.org/10.1016/j.msea.2011.09.113. [CrossRef] [Google Scholar]
- R.B. Figueiredo, E.R. Eduardo, X. Zhao, X. Yang, X. Liu, P.R. Cetlin, T.G. Langdon, Improving the fatigue behavior of dental implants through processing commercial purity titanium by equal-channel angular pressing, Mater. Sci. Eng. A. 619 (2014) 312318, https://doi.org/10.1016/j.msea.2014.09.099. [CrossRef] [Google Scholar]
- I.P. Semenova, V.V. Polyakova, G.S. Dyakonov, A.V. Polyakov, Ultrafine-Grained Titanium-Based Alloys: Structure and Service Properties for Engineering Applications, Adv. Eng. Mater. 22 (2020) 1900651, https://doi.org/10.1002/adem.201900651. [CrossRef] [Google Scholar]
- S. Frint, M. Hockauf, P. Frint, M.F.X. Wagner, Scaling up Segal’s principle of Equal- Channel Angular Pressing, Mater. Des. 97 (2016) 502-511, https://doi.org/10.1016Zj.matdes.2016.02.067. [Google Scholar]
- A. Jäger, V. Gärtnerova, K. Tesarˇ, Microstructure and anisotropy of the mechanical properties in commercially pure titanium after equal channel angular pressing with back pressure at room temperature, Mater. Sci. Eng. A. 644 (2015) 114-120, https://doi.org/10.1016/j.msea.2015.07.038. [CrossRef] [Google Scholar]
- Y. Wu, F. Feng, H. Xin, K. Li, Z. Tang, Y. Guo, D. Qin, B. An, X. Diao, C. Dou, Fracture Strength and Osseointegration of an Ultrafine-Grained Titanium Mini Dental Implant after Macromorphology Optimization, ACS Biomater. Sci. Eng. 5 (2019) 4122-4130, https://doi.org/10.1021/acsbiomaterials.9b00406. [CrossRef] [Google Scholar]
- B. An, Z. Li, X. Diao, H. Xin, Q. Zhang, X. Jia, Y. Wu, K. Li, Y. Guo, In vitro and in vivo studies of ultrafine-grain Ti as dental implant material processed by ECAP, Mater. Sci. Eng. C. 67 (2016) 34-41, https://doi.org/10.1016/j.msec.2016.04.105. [CrossRef] [Google Scholar]
- C.S. Meredith, A.S. Khan, The microstructural evolution and thermomechanical behavior of UFG Ti processed via equal channel angular pressing, J. Mater. Process. Technol. 219 (2015) 257-270, https://doi.org/10.1016/jjmatprotec.2014.12.024. [CrossRef] [Google Scholar]
- X. Zhao, X. Yang, X. Liu, C.T. Wang, Y. Huang, T.G. Langdon, Processing of commercial purity titanium by ECAP using a 90 degrees die at room temperature, Mater. Sci. Eng. A. 607 (2014) 482-489, https://doi.org/10.1016/j.msea.2014.04.014. [CrossRef] [Google Scholar]
- M. Shaat, Effects of processing conditions on microstructure and mechanical properties of equal-channel-angular-pressed titanium, Mater. Sci. Technol. (United Kingdom) 34 (2018) 1149-1167, https://doi.org/10.1080/02670836.2018.1478481. [Google Scholar]
- Y. Gu, A. Ma, J. Jiang, Y. Yuan, H. Wu, Microstructure and tensile anisotropy of pure Ti processed by up-scaled RD-ECAP, Mater. Charact. 168 (2020), https://doi.org/10.1016/j.matchar.2020.110513110513. [Google Scholar]
- G. Németh, K. Horváth, C. Hervoches, P. Cejpek, J. Palán, M. Duchek, K. Máthis, Characterization of the microstructure, local macro-texture and residual stress field of commercially pure Titanium grade 2 prepared by CONFORM ECAP, Metals (Basel). 8 (12) (2018) 1000, https://doi.org/10.3390/met8121000. [CrossRef] [Google Scholar]
- M. Hoseini, M. Hamid Pourian, F. Bridier, H. Vali, J.A. Szpunar, P. Bocher, Thermal stability and annealing behaviour of ultrafine grained commercially pure titanium, Mater. Sci. Eng. A. 532 (2012) 58-63, https://doi.org/10.1016/j.msea.2011.10.062. [CrossRef] [Google Scholar]
- K. Hajizadeh, S. Ghobadi Alamdari, B. Eghbali, Stored energy and recrystallization kinetics of ultrafine grained titanium processed by severe plastic deformation, Phys. B Condens. Matter. 417 (2013) 33-38, https://doi.org/10.1016/j.physb.2013.02.031. [CrossRef] [Google Scholar]
- A.V. Podolskiy, H.P. Ng, I.A. Psaruk, E.D. Tabachnikova, R. Lapovok, Cryogenic equal channel angular pressing of commercially pure titanium: Microstructure and properties, J. Mater. Sci. 49 (2014) 6803-6812, https://doi.org/10.1007/s10853-014-8382-1. [CrossRef] [Google Scholar]
- G.S. Dyakonov, S. Mironov, I.P. Semenova, R.Z. Valiev, S.L. Semiatin, EBSD analysis of grain-refinement mechanisms operating during equal-channel angular pressing of commercial-purity titanium, Acta Mater. 173 (2019) 174-183, https://doi.org/10.1016/j.actamat.2019.05.014. [CrossRef] [Google Scholar]
- K. Tesarˇ, A. Jäger, Electron backscatter diffraction analysis of the crack development induced by uniaxial tension in commercially pure titanium, Mater. Sci. Eng. A. 616 (2014) 155-160, https://doi.org/10.1016/j.msea.2014.08.028. [CrossRef] [Google Scholar]
- P. Haušild, A. Materna, J. Nohava, Characterization of Anisotropy in Hardness and Indentation Modulus by Nanoindentation, Metallogr. Microstruct. Anal. 3 (2014) 5-10, https://doi.org/10.1007/s13632-013-0110-8. [CrossRef] [Google Scholar]
- V. Tuninetti, A.F. Jaramillo, G. Riu, C. Rojas-Ulloa, A. Znaidi, C. Medina, A.M. Mateo, J.J. Roa, Experimental correlation of mechanical properties of the ti-6al-4v alloy at different length scales, Metals (Basel). 11 (2021) 1-19, https://doi.org/10.3390/met11010104. [CrossRef] [Google Scholar]
- J. Palan, T. Kubina, P. Motycˇka, The effect of annealing on mechanical and structural properties of UFG titanium grade 2, IOP Conf. Ser. Mater. Sci. Eng. 179 (2017) 12055, https://doi.org/10.1088/1757-899X/179/1/012055. [Google Scholar]
- B. Oberdorfer, E.M. Steyskal, W. Sprengel, R. Pippan, M. Zehetbauer, W. Puff, R. Wurschum, Recrystallization kinetics of ultrafine-grained Ni studied by dilatometry, J. Alloys Compd. 509 (2011) S309-S311, https://doi.org/10.1016/j.jallcom.2010.12.130. [CrossRef] [Google Scholar]
- J.A. Evans, B.T. Sturtevant, B. Clausen, S.C. Vogel, F.F. Balakirev, J.B. Betts, L. Capolungo, R.A. Lebensohn, B. Maiorov, Determining elastic anisotropy of textured polycrystals using resonant ultrasound spectroscopy, J. Mater. Sci. 56 (2021) 1005310073, https://doi.org/10.1007/s10853-021-05827-z. [CrossRef] [Google Scholar]
- C.M. Kube, J. Gillespie, M. Cherry, Influence of residual stress and texture on the resonances of polycrystalline metals, J. Acoust. Soc. Am. 150 (2021) 2624-2634, https://doi.org/10.1121/10.0006667. [CrossRef] [Google Scholar]
- P. Sedlák, H. Seiner, J. Zidek, M. Janovská, M. Landa, Determination of All 21 Independent Elastic Coefficients of Generally Anisotropic Solids by Resonant Ultrasound Spectroscopy: Benchmark Examples, Exp. Mech. 54 (2014) 1073-1085, https://doi.org/10.1007/s11340-014-9862-6. [Google Scholar]
- J. Nejezchlebová, M. Janovská, H. Seiner, P. Sedlák, M. Landa, J. Šmilauerová, J. Strásky´, P. Harcuba, M. Janecˇek, The effect of athermal and isothermal x phase particles on elasticity of b-Ti single crystals, Acta Mater. 110 (2016) 185-191, https://doi.org/10.1016/j.actamat.2016.03.033. [CrossRef] [Google Scholar]
- J. Nejezchlebová, H. Seiner, P. Sedlák, M. Landa, J. Šmilauerová, E. Aeby-Gautier, B. Denand, M. Dehmas, B. Appolaire, On the complementarity between resistivity measurement and ultrasonic measurement for in-situ characterization of phase transitions in Ti-alloys, J. Alloys Compd. 762 (2018) 868-872, https://doi.org/10.1016/j.jallcom.2018.05.173. [CrossRef] [Google Scholar]
- J. Nejezchlebová, M. Janovská, P. Sedlák, J. Šmilauerová, J. Strásky´, M. Janecˇek, H. Seiner, Elastic constants of b-Ti15Mo, J. Alloys Compd. 792 (2019) 960-967, https://doi.org/10.1016/jjallcom.2019.03.418. [CrossRef] [Google Scholar]
- M. Koller, P. Sedlák, H. Seiner, M. Sevcˇik, M. Landa, J. Stráská, M. Janecˇek, An ultrasonic internal friction study of ultrafine-grained AZ31 magnesium alloy, J. Mater. Sci. 50 (2014) 808-818, https://doi.org/10.1007/s10853-014-8641-1. [Google Scholar]
- D. Vokoun, J. Manˇak, K. Tesarˇ, S. Habr, Compression of ecaped titanium micropillars for two principal orientations, Acta Polytech. CTU Proc. 27 (2020) 1-5, https://doi.org/10.14311/APP.2020.27.0001. [Google Scholar]
- K. Tesarˇ, V. Gärtnerová, M. Neˇmec, A. Jäger, Fe-stabilized duplex a/b microstructure containing c titanium hydride in Ti grade 2 obtained by volumetrically incomplete phase transition, Mater. Charact. 153 (2019) 128-135, https://doi.org/10.1016/j.matchar.2019.04.045. [CrossRef] [Google Scholar]
- W.C. Oliver, G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, J. Mater. Res. 19 (2004) 3-20, https://doi.org/10.1557/jmr.2004.19.L3. [CrossRef] [Google Scholar]
- H. Sopha, K. Tesar, P. Knotek, A. Jäger, L. Hromadko, J.M. Macak, TiO2 nanotubes grown on Ti substrates with different microstructure, Mater. Res. Bull. 103 (2018) 197204, https://doi.org/10.1016/j.materresbull.2018.03.036. [CrossRef] [Google Scholar]
- Q. Yu, Z.W. Shan, J. Li, X. Huang, L. Xiao, J. Sun, E. Ma, Strong crystal size effect on deformation twinning, Nature. 463 (2010) 335-338, https://doi.org/10.1038/nature08692. [CrossRef] [Google Scholar]
- A. Ghaderi, M.R. Barnett, Sensitivity of deformation twinning to grain size in titanium and magnesium, Acta Mater. 59 (2011) 7824-7839, https://doi.org/10.1016/j.actamat.2011.09.018. [CrossRef] [Google Scholar]
- V.I. Zel’dovich, N.Y. Frolova, A.M. Patselov, V.M. Gundyrev, A.E. Kheifets, V.P. Pilyugin, The x-phase formation in titanium upon deformation under pressure, Phys. Met. Metallogr. 109 (1) (2010) 30-38, https://doi.org/10.1134/S0031918X10010059. [CrossRef] [Google Scholar]
- R.G. Hennig, D.R. Trinkle, J. Bouchet, S.G. Srinivasan, R.C. Albers, J.W. Wilkins, Impurities block the a to x martensitic transformation in titanium, Nat. Mater. 4 (2005) 129-133, https://doi.org/10.1038/nmat1292. [CrossRef] [Google Scholar]
- Y. Todaka, J. Sasaki, T. Moto, M. Umemoto, Bulk submicrocrystalline x-Ti produced by high-pressure torsion straining, Scr. Mater. 59 (2008) 615-618, https://doi.org/10.1016/j.scriptamat.2008.05.015. [Google Scholar]
- S.V. Sajadifar, C. Atli, G.G. Yapici, Effect of severe plastic deformation on the damping behavior of titanium, Mater. Lett. 244 (2019) 100-103, https://doi.org/10.1016/j.matlet.2019.02.010. [Google Scholar]
- M. Koller, T. Chráska, J. Cinert, O. Heczko, J. Kopecˇek, M. Landa, R. Mušálek, M. Rameš, H. Seiner, J. Strásky´, M. Janecˇek, Mechanical and magnetic properties of semi-Heusler/light-metal composites consolidated by spark plasma sintering, Mater. Des. 126 (2017) 351-357, https://doi.org/10.1016/j.matdes.2017.04.028. [Google Scholar]
- X. Liu, Q. Zhang, X. Zhao, X. Yang, L. Luo, Ambient-temperature nanoindentation creep in ultrafine-grained titanium processed by ECAP, Mater. Sci. Eng. A. 676 (2016) 73-79, https://doi.org/10.1016/j.msea.2016.08.111. [CrossRef] [Google Scholar]
- A. Sotniczuk, D. Kuczyn´ ska-Zemła, A. Królikowski, H. Garbacz, Enhancement of the corrosion resistance and mechanical properties of nanocrystalline titanium by low- temperature annealing, Corros. Sci. 147 (2019) 342-349, https://doi.org/10.1016/j.corsci.2018.11.016. [Google Scholar]
- P.C. Zhao, B. Chen, Z.G. Zheng, B. Guan, X.C. Zhang, S.T. Tu, Microstructure and Texture Evolution in a Post-dynamic Recrystallized Titanium During Annealing, Monotonic and Cyclic Loading, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 52 (2021) 394-412, https://doi.org/10.1007/s11661-020-06071-x. [CrossRef] [Google Scholar]
- P. Zhao, B. Chen, J. Kelleher, G. Yuan, B. Guan, X. Zhang, S. Tu, High-cyclefatigue induced continuous grain growth in ultrafine-grained titanium, Acta Mater. 174 (2019) 29-42, https://doi.org/10.1016/j.actamat.2019.05.038. [CrossRef] [Google Scholar]
- N. Bozzolo, N. Dewobroto, T. Grosdidier, F. Wagner, Texture evolution during grain growth in recrystallized commercially pure titanium, Mater. Sci. Eng. A. 397 (2005) 346-355, https://doi.org/10.1016/j.msea.2005.02.049. [CrossRef] [Google Scholar]
- Y. Wang, W. He, N. Liu, A. Chapuis, B. Luan, Q. Liu, Effect of pre-annealing deformation on the recrystallized texture and grain boundary misorientation in commercial pure titanium, Mater. Charact. 136 (2018) 1-11, https://doi.org/10.1016/j.matchar.2017.11.059. [CrossRef] [Google Scholar]
- E.S. Fisher, C.J. Renken, Single-crystal elastic moduli and the hcp ? bcc transformation in Ti, Zr, and Hf, Phys. Rev. 135 (1964) A482-A494, https://doi.org/10.1103/PhysRev.135.A482. [CrossRef] [Google Scholar]
- S. Pilz, T. Gustmann, F. Günther, M. Zimmermann, U. Kuhn, A. Gebert, Controlling the Young’s modulus of a fi-type Ti-Nb alloy via strong texturing by LPBF, Mater. Des. 216 (2022), https://doi.org/10.1016/j.matdes.2022.110516110516. [Google Scholar]
- E.G Hertwich et., Material efficiency strategies to reducing greenhouse gas emissions associated with buildings, vehicles, and electronics—a review, Environmental Research Letters 14 (2019) 043004. https://doi.org/10.1088/1748-9326/ab0fe3. [CrossRef] [Google Scholar]
- G. Purcek, H. Yanar, M. Demirtas, Y. Alemdag, D.V. Shangina, S.V. Dobatkin, Optimization of strength, ductility and electrical conductivity of Cu-Cr-Zr alloy by combining multi-route ECAP and aging, Materials Science and Engineering A 649 (2016) 114-122. https://doi.org/10.1016/j.msea.2015.09.111. [CrossRef] [Google Scholar]
- Y. Estrin, A. Vinogradov, Extreme grain refinement by severe plastic deformation: A wealth of challenging science, Acta Materialia 61 (2013) 782-817. https://doi.org/10.1016/j.actamat.2012.10.038. [CrossRef] [Google Scholar]
- S. Rusz, O. Hilser, V. Ochodek, L. Cizek, M. Kraus, V. Mares, A. Grajcar, J. Svec, Effect of severe plastic deformation on mechanical and fatigue behaviour of medium- C sheet steel, Journal of Mining and Metallurgy, Section B: Metallurgy, 56 (2020) 161170. http://doi.org/10.2298/JMMB190910008R. [CrossRef] [Google Scholar]
- I.A. Ovid’ko, R.Z. Valiev, Y.T. Zhu, Review on superior strength and enhanced ductility of metallic nanomaterials, Progress in Materials Science 94 (2018) 462-540. https://doi.org/10.1016/j.pmatsci.2018.02.002. [CrossRef] [Google Scholar]
- I. Sabirov, M. Yu. Murashkin, R.Z. Valiev, Nanostructured aluminium alloys produced by severe plastic deformation: New horizons in development, Materials Science and Engineering A 560 (2013) 1-24. https://doi.org/10.1016/j.msea.2012.09.020. [CrossRef] [Google Scholar]
- J.P. Sun, Z.Q. Yang, J. Han, H. Liu, D. Song, J.H. Jiang, High strength and ductility AZ91 magnesium alloy with multi-heterogenous microstructures prepared by hightemperature ECAP and short-time aging, Materials Science and Engineering A 734 (2018) 485-490. https://doi.org/10.1016/j.msea.2018.07.075. [CrossRef] [Google Scholar]
- L.B. Tong, J.H. Chu, W.T. Sun, Z.H. Jiang, D.N. Zou, S. Kamad, M.Y. Zheng, Development of a high-strength Mg alloy with superior ductility through a unique texture modification from equal channel angular pressing, Journal of Magnesium and Alloys 9 (2021) 1007-1018. https://doi.org/10.1016/jjma.2020.03.011. [CrossRef] [Google Scholar]
- X. An, S. Wu, Z. Zhang, R. Figueiredo, N. Gao, T. Longdon, Enhanced strengthductility synergy in nanostructured Cu and Cu-Al alloys processed by high-pressure torsion and subsequent annealing, Scripta Materialia, 66 (2012) 227-230. https://doi.org/10.1016/j.scriptamat.2011.10.043. [CrossRef] [Google Scholar]
- SR. Kumar, K. Gudimetla, P. Venkatachalam, B. Ravisankar, K. Jayasankar, Microstructural and mechanical properties of Al 7075 alloy processed by equal channel 20 angular pressing, Materials Science and Engineering A 533 (2012) 50-54. https://doi.org/10.1016/j.msea.2011.11.031. [CrossRef] [Google Scholar]
- L.A. Dobrzański, M. Krupiński, K. Labisz, B. Krupińska, A. Grajcar, Phases and structure characteristics of the near eutectic Al-Si-Cu alloy using derivative thermo analysis, Materials Science Forum 638-642 (2010) 475-480. https://doi.org/10.4028/www.scientific.net/MSF.638-642.475. [CrossRef] [Google Scholar]
- M.H. Shaeri, Ebrahimi, M. M.T. Salehi, S.H Seyyedein, Effect of ECAP temperature on microstructure and mechanical properties of Al-Zn-Mg-Cu alloy, Progress in Natural Science: Materials International, 26 (2016) 182-191. https://doi.org/10.1016/j.pnsc.2016.03.003. [Google Scholar]
- M.H. Shaeri, M.T. Salehi, S.H. Seyyedein, M.R. Abutalebi, J.K. Park, Microstructure and mechanical properties of Al-7075 alloy processed by equal channel angular pressing combined with aging treatment, Materials and Design 57 (2014) 250-257. https://doi.org/10.1016/j.matdes.2014.01.008. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.