Open Access
Issue
MATEC Web Conf.
Volume 390, 2024
3rd International Scientific and Practical Conference “Energy-Optimal Technologies, Logistic and Safety on Transport” (EOT-2023)
Article Number 01003
Number of page(s) 9
Section Energy-Efficient Technologies, Energy Management and Energy Efficiency in Transport
DOI https://doi.org/10.1051/matecconf/202439001003
Published online 24 January 2024
  1. A. L. Azarnov, K. V. Bezruchko, V. I. Laznenko, S. V. Sinchenko, A. A. Kharchenko. Issledovanie faktorov, okazyvayushchih vliyanie na degradaciyu litij-ionnyh akkumulyatorov. Aviacionno-kosmicheskaya tekhnika i tekhnologiya № 4 (131), 10–17 (2016) [in Russian] [Google Scholar]
  2. BU-107: Comparison Table of Secondary Batteries, https://batteryuniversity.com/article/bu-107-comparison-table-of-secondary-batteries [Google Scholar]
  3. X. Bian, Z. Wei, W. Li, J. Pou, D. U. Sauer, L. Liu. State-of-health estimation of lithium-ion batteries by fusing an open circuit voltage model and incremental capacity analysis. IEEE Transactions on Power Electronics 37(2), 2226–2236 (2021), https://www.researchgate.net/publication/353892916 [Google Scholar]
  4. J Sieg, M Storch, J Fath, A Nuhic, J Bandlow, B Spier, DU Sauer. Local degradation and differential voltage analysis of aged lithium-ion pouch cells. Journal of Energy Storage, 30 (1), 101582 (2020) [CrossRef] [Google Scholar]
  5. Pouyan Shafiei Sabet, Alexander Johannes Warnecke, Frank Meier, Heiko Witzenhausen, Egoitz Martinez-Laserna, Dirk Uwe Sauer. Non-invasive yet separate investigation of anode/cathode degradation of lithium-ion batteries (nickel–cobalt–manganese vs. graphite) due to accelerated aging. Journal of Power Sources 449, 227369 (2020) [CrossRef] [Google Scholar]
  6. W. Li, N. Sengupta, P. Dechent, D. Howey, A. Annaswamy, D. U. Sauer. Online capacity estimation of lithium-ion batteries with deep long short-term memory networks. Journal of power sources 482, 228863 (2021) [CrossRef] [Google Scholar]
  7. Seo, G., et al. Rapid determination of lithium-ion battery degradation: High C-rate LAM and calculated limiting LLI. Journal of Energy Chemistry. Volume 67, 663–671 (2022) [CrossRef] [Google Scholar]
  8. What is lithium ion battery how do lithium ion batteries work? (2021), https://www.tycorun.com/blogs/news/what-is-lithium-ion-battery-how-do-lithium-ion-batteries-work [Google Scholar]
  9. D. D. González, R. Diosi, Accelerated life testing and life prediction of lithium ion batteries connected to wind turbine. Aalborg: Departmen of energy technology Aalong University, 101 (2011) [Google Scholar]
  10. J. Groot, State-of-Health Estimation of Li-ion Batteries: Cycle Life Test Methods [Text]. Guteborg: Division of Electric Power Engineering Department of Energy and Environment Chalmers University Of Technology, 150 (2012) [Google Scholar]
  11. N. Dane, Degradation analysis and health monitoring of lithium ion batteries [Text]. Maryland: Faculty of the Graduate School of the University of Maryland, 104 (2011) [Google Scholar]
  12. K. Smith, G.-H. Kim, A. Pesaran, Modeling of Nonuniform Degradation in Large-Format Li-ion Batteries [Text]. 215th Electrochemical Society Meeting, May 24-29, San Francisco, CA, 255 (2009) [Google Scholar]
  13. Christoph R. Birkl, Matthew R. Roberts, Euan McTurk, Peter G. Bruce, David A. Howey. Degradation diagnostics for lithium ion cells. Journal of Power Sources. 341, 373–386 (2017) [CrossRef] [Google Scholar]
  14. P. Lefley, A. Soge, J. Starkey, Rechargeable batteries – Part 3: Lithium-ion batteries [Тext]. Energize: Nooitgedacht, Gauteng, South Africa, April, 49–52 (2012) [Google Scholar]
  15. K. Takei, K. Kumai, Y. Kobayashi, H. Miyashito, N. Terada, T. Iwahori, T. Tanaka, Cycle life estimation of lithium secondary battery by extrapolation method and accelerated aging test. J. Power Sources 97-98, 697–701 (2001) [CrossRef] [Google Scholar]
  16. Technical information on the sony Lithium-ion Rechargable battery/ Sony Corp. (1995) [Google Scholar]
  17. Madeleine Ecker, Calendar and cycle life study of Li(NiMnCo)O2-based 18650 lithiumion batteries. Journal of Power Sources 248, 839–851 (2014) [CrossRef] [Google Scholar]
  18. S. Tobishima, J. Yamaki, T. Hirai, Safety and capacity retention of lithium ion cells after long periods of storage. J. Appl. Electrochem. Vol. 30(4), 405–410 (2000) [CrossRef] [Google Scholar]
  19. Klasyfikatsiia nespravnosti litiievoho akumuliatora ta prychyny nespravnosti (2022), https://ua.manly-battery.com/info/classification-of-lithium-battery-failure-and-66634180.html [in Ukrainian] [Google Scholar]
  20. X. Li, Z. Wang, L. Zhang, C. Zou, D. D. Dorrell, State-of-health estimation for Li-ion batteries by combing the incremental capacity analysis method with grey relational analysis. J. Power Sources, 106–114 (2019) [CrossRef] [Google Scholar]
  21. R. Xiong, Y. Zhang, J. Wang, H. He; S. Peng, M. Pecht, Lithium-Ion Battery Health Prognosis Based on a Real Battery Management System Used in Electric Vehicles. IEEE Trans. Veh. Technol. V 68, I 5, 4110–4121 (2019) [CrossRef] [Google Scholar]
  22. V. Ovejas, A. Cuadras, Impedance Characterization of an LCO-NMC/Graphite Cell: Ohmic Conduction, SEI Transport and Charge-Transfer Phenomenon. Batteries, 4(3), 43 (2018), https://www.researchgate.net/publication/327567351 [CrossRef] [Google Scholar]
  23. Zheng Linfeng, Zhu Jianguo, Lu Dylan Dah-Chuan, Wang Guoxiu, He Tingting Incremental capacity analysis and differential voltage analysis based state of charge and capacity estimation for lithium-ion batteries. Energy, Elsevier, vol. 150(C), 759–769 (2018) [Google Scholar]
  24. M. M. Rahman, Wang Jiazhao, Deng Xiaolong, Li Ying, Liu Hua-Kun, Hydrothermal synthesis of nanostructured Co 3O 4 materials under pulsed magnetic field and with an aging technique, and their electrochemical performance as anode for lithium-ion battery. Electrochimica Acta. 55 (2). 504–510 (2009) [CrossRef] [Google Scholar]
  25. Lu Lin, Wang Jiazhao, Zhu Xue-Bin, Gao Xuan-Wen, Liu Hua-Kun, High capacity and high rate capability of nanostructured CuFeO2 anode materials for lithium-ion batteries. Journal of Power Sources. 196 (16). 7025–7029 (2011) [CrossRef] [Google Scholar]
  26. Wang Deyu, Wu Xiaodong, Wang Zhaoxiang, Chen Liquan Cracking, Causing Cyclic Instability of LiFePO4 Cathode Material. Journal of Power Sources. 140 (1). 520–525 (2005) [Google Scholar]
  27. Comparison of Open Datasets for Lithium-ion Battery Testing, https://docs.google.com/spreadsheets/d/10w5yXdQtlQjTTS3BxPP233CiiBScIXecUp2OQuvJ_JI/edit#gid=0 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.