Open Access
Issue |
MATEC Web Conf.
Volume 388, 2023
2023 RAPDASA-RobMech-PRASA-AMI Conference Advanced Manufacturing Beyond Borders - The 24th Annual International RAPDASA Conference joined by RobMech, PRASA and AMI, hosted by CSIR and CUT
|
|
---|---|---|
Article Number | 10006 | |
Number of page(s) | 15 | |
Section | AM Post Processing & Qualification | |
DOI | https://doi.org/10.1051/matecconf/202338810006 | |
Published online | 15 December 2023 |
- F.H. Sam Froes, Titanium for medical and dental applications—An introduction. Titanium in Medical and Dental Applications (Elsevier, 2018), pp. 3–21. https://doi.org/10.1016/B978-0-12-812456-7.00001-9. [Google Scholar]
- ASTM International, Additive manufacturing — Design — Part 1: Laser-based powder bed fusion of metals, ISO/ASTM 52911-1:2019(E), (2019). [Google Scholar]
- J. M. Haglin, A. E. M. Eltorai, J.A. Gil et al., Patient-Specific Orthopaedic Implants, Orthop Surg, 8, 417–424, (2016). https://doi.org/10.1111/os.12282. [CrossRef] [Google Scholar]
- P. Ahangar, M. E. Cooke, M.H. Weber, et al., Current Biomedical Applications of 3D Printing and Additive Manufacturing, Applied Sciences, 9, 1713, (2019). https://doi.org/10.3390/app9081713. [CrossRef] [Google Scholar]
- T. Takizawa, N. Nakayama, H. Haniu et al., Titanium Fiber Plates for Bone Tissue Repair, Advanced Materials, 30, 1703608, (2018). https://doi.org/10.1002/adma.201703608. [CrossRef] [Google Scholar]
- X. P. Tan, Y. J. Tan, C.S.L. Chow et al., Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: A state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility, Materials Science and Engineering C, 76, (2017). https://doi.org/10.1016/j.msec.2017.02.094. [Google Scholar]
- P. Mercelis, & J. Kruth, Residual stresses in selective laser sintering and selective laser melting, Rapid Prototyp J, 12, 254–265, (2006). https://doi.org/10.1108/13552540610707013. [CrossRef] [Google Scholar]
- J. L. Bartlett, & X. Li, An overview of residual stresses in metal powder bed fusion, Addit Manuf, 27, 131–149, (2019). https://doi.org/10.1016/j.addma.2019.02.020. [Google Scholar]
- S. A. Etesami, B. Fotovvati, & E. Asadi, Heat treatment of Ti-6Al-4V alloy manufactured by laser-based powder-bed fusion: Process, microstructures, and mechanical properties correlations, J Alloys Compd, 895, 162618, (2022). https://doi.org/10.1016/j.jallcom.2021.162618. [CrossRef] [Google Scholar]
- B. Vrancken, S. Buls, J.-P. Kruth et al., Preheating of Selective Laser Melted Ti6Al4V: Microstructure and Mechanical Properties. Proceedings of the 13th World Conference on Titanium (Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016), pp. 1269–1277. https://doi.org/10.1002/9781119296126.ch215. [CrossRef] [Google Scholar]
- T. Hanawa, Titanium-Tissue Interface Reaction and Its Control With Surface Treatment, Front Bioeng Biotechnol, 7, (2019). https://doi.org/10.3389/fbioe.2019.00170. [CrossRef] [Google Scholar]
- T. Hanawa, 2.1 - Transition of surface modification of titanium for medical and dental use. In F.H. Froes, & M. Qian, eds., Titanium in Medical and Dental Applications (Woodhead Publishing, 2018), pp. 95–113. https://doi.org/https://doi.org/10.1016/B978-0-12-812456-7.00005-6. [Google Scholar]
- K. Ding, & L. Ye, Physical and mechanical mechanisms of laser shock peening. Laser Shock Peening (Elsevier, 2006), pp. 7–46. https://doi.org/10.1533/9781845691097.7. [CrossRef] [Google Scholar]
- R. Sonntag, J. Reinders, J. Gibmeier et al., Fatigue performance of medical Ti6Al4V alloy after mechanical surface treatments, PLoS One, 10, 1–15, (2015). https://doi.org/10.1371/journal.pone.0121963. [Google Scholar]
- E. Wycisk, S. Siddique, D. Herzog et al., Fatigue Performance of Laser Additive Manufactured Ti-6Al-4V in Very High Cycle Fatigue Regime up to 109 Cycles, Front Mater, 2, 2–9, (2015). https://doi.org/10.3389/fmats.2015.00072. [CrossRef] [Google Scholar]
- E. Maawad, Y. Sano, L. Wagner et al., Investigation of laser shock peening effects on residual stress state and fatigue performance of titanium alloys, Materials Science and Engineering A, 536, 82–91, (2012). https://doi.org/10.1016/j.msea.2011.12.072. [CrossRef] [Google Scholar]
- Y. Sano, M. Obata, T. Kubo et al., Retardation of crack initiation and growth in austenitic stainless steels by laser peening without protective coating, Materials Science and Engineering: A, 417, 334–340, (2006). https://doi.org/10.1016/j.msea.2005.11.017. [CrossRef] [Google Scholar]
- U. Trdan, J. A. Porro, J.L. Ocaña et al., Laser shock peening without absorbent coating (LSPwC) effect on 3D surface topography and mechanical properties of 6082-T651 Al alloy, Surf Coat Technol, 208, 109–116, (2012). https://doi.org/10.1016/j.surfcoat.2012.08.048. [CrossRef] [Google Scholar]
- M. Rozmus-Górnikowska, Surface Modifications of a Ti6Al4V Alloy by a Laser Shock Processing, Acta Phys Pol A, 117, 808–811, (2010). https://doi.org/10.12693/APhysPolA.117.808. [CrossRef] [Google Scholar]
- B. Boyan, Role of material surfaces in regulating bone and cartilage cell response, Biomaterials, 17, 137–146, (1996). https://doi.org/10.1016/0142-9612(96)85758-9. [CrossRef] [Google Scholar]
- D. Buser, R. K. Schenk, S. Steinemann et al., Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs, J Biomed Mater Res, 25, 889–902, (1991). https://doi.org/https://doi.org/10.1002/jbm.820250708. [CrossRef] [Google Scholar]
- A. Wennerberg, C. Hallgren, C. Johansson et al., A histomorphometric evaluation of screw-shaped implants each prepared with two surface roughnesses, Clin Oral Implants Res, 9, 11–19, (1998). https://doi.org/10.1034/j.1600-0501.1998.090102.x. [CrossRef] [Google Scholar]
- A. N. Aufa, M. Z. Hassan, & Z. Ismail, Recent advances in Ti-6Al-4V additively manufactured by selective laser melting for biomedical implants: Prospect development, J Alloys Compd, 896, 163072, (2022). https://doi.org/10.1016/j.jallcom.2021.163072. [CrossRef] [Google Scholar]
- G. Wang, J. Li, K. Lv et al., Surface thermal oxidation on titanium implants to enhance osteogenic activity and in vivo osseointegration, Sci Rep, 6, 1–13, (2016). https://doi.org/10.1038/srep31769. [CrossRef] [PubMed] [Google Scholar]
- L. Crespo, M. Hierro-Oliva, S. Barriuso et al., On the interactions of human bone cells with Ti6Al4V thermally oxidized by means of laser shock processing, Biomedical Materials, 11, 015009, (2016). https://doi.org/10.1088/1748-6041/11/1/015009. [CrossRef] [Google Scholar]
- N. Kalentics, E. Boillat, P. Peyre et al., Tailoring residual stress profile of Selective Laser Melted parts by Laser Shock Peening, Addit Manuf, 16, 90–97, (2017). https://doi.org/10.1016/j.addma.2017.05.008. [Google Scholar]
- D. Glaser, S. N. Van Staden, N. Ivanovic et al., The Potential Enhancement of Components Produced by Metal Additive Manufacturing using Laser Shock Processing. 18th Annual International RAPDASA Conference (Durban, South Africa, 2017), pp. 85–99. [Google Scholar]
- ASTM International, Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials, ASTM E92-17, (2017). https://doi.org/10.1520/E0092-17. [Google Scholar]
- ASTM International, Standard Test Method for Determining Residual Stresses by the Hole-Drilling Strain-Gage Method, ASTM E837-13a, (2013). https://doi.org/10.1520/E0837-13A. [Google Scholar]
- P. V. Grant, J. D. Lord, & P. S. Whitehead, The Measurement of Residual Stresses by the Incremental Hole Drilling Technique, Measurement Good Practice Guide no. 53, (2006). [Google Scholar]
- SLM Solutions Group AG, Ti-Alloy Ti6Al4V ELI Material Data Sheet (Germany). [Google Scholar]
- Micro-Measurements, Strain Gage Installations with M-Bond 200 Adhesive, Instruction Bulletin B-127, (2015). [Google Scholar]
- M. Simonelli, Y. Y. Tse, & C. Tuck, Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti-6Al-4V, Materials Science and Engineering A, 616, 1–11, (2014). https://doi.org/10.1016/j.msea.2014.07.086. [CrossRef] [Google Scholar]
- L. Thijs, F. Verhaeghe, T. Craeghs et al., A study of the microstructural evolution during selective laser melting of Ti-6Al-4V, Acta Mater, 58, 3303–3312, (2010). https://doi.org/10.1016/j.actamat.2010.02.004. [CrossRef] [Google Scholar]
- L. Zhou, & W. He, Gradient Microstructure in Laser Shock Peened Materials (Springer Singapore, 2021). https://doi.org/10.1007/978-981-16-1747-8. [CrossRef] [Google Scholar]
- G. Chi, D. Yi, & H. Liu, Effect of roughness on electrochemical and pitting corrosion of Ti-6Al-4V alloy in 12 wt.% HCl solution at 35 °C, Journal of Materials Research and Technology, 9, 1162–1174, (2020). https://doi.org/10.1016/J.JMRT.2019.11.044. [CrossRef] [Google Scholar]
- J. Schijve, Fatigue of Structures and Materials, 2nd ed (Dordrecht: Springer Netherlands, 2009). https://doi.org/10.1007/978-1-4020-6808-9. [Google Scholar]
- G. Matos, Surface Roughness of Dental Implant and Osseointegration, J Maxillofac Oral Surg, 20, 1–4, (2021). https://doi.org/10.1007/s12663-020-01437-5. [CrossRef] [Google Scholar]
- M. Khandaker, S. Riahinezhad, F. Sultana et al., Peen treatment on a titanium implant: Effect of roughness, osteoblast cell functions, and bonding with bone cement, Int J Nanomedicine, 11, 585–595, (2016). https://doi.org/10.2147/IJN.S89376. [CrossRef] [Google Scholar]
- K. Tosha, Influence of Residual Stresses on the Hardness Numberin the Affected Layer Produced by Shot Peening. 2nd Asia-Pacific Forum on Precision Surface Finishing and Deburring Technology (Seoul, 2002), pp. 48–54. [Google Scholar]
- I. Yadroitsava, S. Grewar, D. Hattingh et al., Residual Stress in SLM Ti6Al4V Alloy Specimens, Materials Science Forum, 828-829, 305–310, (2015). https://doi.org/10.4028/www.scientific.net/MSF.828-829.305. [CrossRef] [Google Scholar]
- D. Glaser, C. Polese, A.M., Venter et al., Evaluation of laser shock peening process parameters incorporating Almen strip deflections, Surf Coat Technol, 434, (2022). https://doi.org/10.1016/j.surfcoat.2022.128158. [CrossRef] [Google Scholar]
- Curtis-Wright Surface Technologies, Shot peening or laser peening: A comparative guide to their application(s), https://cwst.com/shot-peening-or-laser-peening/ [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.