Open Access
Issue |
MATEC Web Conf.
Volume 388, 2023
2023 RAPDASA-RobMech-PRASA-AMI Conference Advanced Manufacturing Beyond Borders - The 24th Annual International RAPDASA Conference joined by RobMech, PRASA and AMI, hosted by CSIR and CUT
|
|
---|---|---|
Article Number | 05001 | |
Number of page(s) | 10 | |
Section | Product Design and Development | |
DOI | https://doi.org/10.1051/matecconf/202338805001 | |
Published online | 15 December 2023 |
- P. Mehrotra, ‘Biosensors and their applications - A review’, Journal of Oral Biology and Craniofacial Research, vol. 6, no. 2. 2016. DOI: 10.1016/j.jobcr.2015.12.002. [Google Scholar]
- G. M. Whitesides, ‘The origins and the future of microfluidics’, Nature, vol. 442, no. 7101. 2006. DOI: 10.1038/nature05058. [Google Scholar]
- N. Bhalla, P. Jolly, N. Formisano, and P. Estrela, ‘Introduction to biosensors’, Essays Biochem, vol. 60, no. 1, 2016, DOI: 10.1042/EBC20150001. [Google Scholar]
- M. B. Kulkarni, N. H. Ayachit, and T. M. Aminabhavi, ‘Biosensors and Microfluidic Biosensors: From Fabrication to Application’, Biosensors, vol. 12, no. 7. 2022. DOI: 10.3390/bios12070543. [Google Scholar]
- B. Ziaie, A. Baldi, M. Lei, Y. Gu, and R. A. Siegel, ‘Hard and soft micromachining for BioMEMS: Review of techniques and examples of applications in microfluidics and drug delivery’, Adv Drug Deliv Rev, vol. 56, no. 2, 2004, DOI: 10.1016/j.addr.2003.09.001. [Google Scholar]
- C. Iliescu, H. Taylor, M. Avram, J. Miao, and S. Franssila, ‘A practical guide for the fabrication of microfluidic devices using glass and silicon’, Biomicrofluidics, vol. 6, no. 1, 2012, DOI: 10.1063/1.3689939. [CrossRef] [Google Scholar]
- A. Fornell, P. Söderbäck, Z. Liu, M. D. A. Moreira, and M. Tenje, ‘Fabrication of silicon microfluidic chips for acoustic particle focusing using direct laser writing’, Micromachines (Basel), vol. 11, no. 2, 2020, DOI: 10.3390/mi11020113. [Google Scholar]
- K. Griffin and D. Pappas, ‘3D printed microfluidics for bioanalysis: A review of recent advancements and applications’, TrAC - Trends in Analytical Chemistry, vol. 158. 2023. DOI: 10.1016/j.trac.2022.116892. [CrossRef] [Google Scholar]
- M. Selmi, M. H. Gazzah, and H. Belmabrouk, ‘Optimization of microfluidic biosensor efficiency by means of fluid flow engineering’, Sci Rep, vol. 7, no. 1, 2017, DOI: 10.1038/s41598-017-06204-0. [CrossRef] [Google Scholar]
- K. Ward and Z. H. Fan, ‘Mixing in microfluidic devices and enhancement methods’, Journal of Micromechanics and Microengineering, vol. 25, no. 9, 2015, DOI: 10.1088/0960-1317/25/9/094001. [CrossRef] [Google Scholar]
- E. S. Shanko, Y. van de Burgt, P. D. Anderson, and J. M. J. den Toonder, ‘Microfluidic magnetic mixing at low reynolds numbers and in stagnant fluids’, Micromachines (Basel), vol. 10, no. 11, 2019, DOI: 10.3390/mi10110731. [Google Scholar]
- G. Luka et al., ‘Microfluidics integrated biosensors: A leading technology towards lab-on-A-chip and sensing applications’, Sensors (Switzerland), vol. 15, no. 12. 2015. DOI: 10.3390/s151229783. [Google Scholar]
- H. Yamaguchi and M. Miyazaki, ‘Enzyme-immobilized microfluidic devices for biomolecule detection’, TrAC - Trends in Analytical Chemistry, vol. 159. 2023. DOI: 10.1016/j.trac.2022.116908. [CrossRef] [Google Scholar]
- A. Al Rashid, W. Ahmed, M. Y. Khalid, and M. Koç, ‘Vat photopolymerization of polymers and polymer composites: Processes and applications’, Additive Manufacturing, vol. 47. 2021. DOI: 10.1016/j.addma.2021.102279. [CrossRef] [Google Scholar]
- C. C. Lin, J. H. Wang, H. W. Wu, and G. Bin Lee, ‘Microfluidic Immunoassays’, JALA - Journal of the Association for Laboratory Automation, vol. 15, no. 3. 2010. DOI: 10.1016/j.jala.2010.01.013. [Google Scholar]
- Y. F. Lee, K. Y. Lien, H. Y. Lei, and G. Bin Lee, ‘An integrated microfluidic system for rapid diagnosis of dengue virus infection’, Biosens Bioelectron, vol. 25, no. 4, 2009, DOI: 10.1016/j.bios.2009.08.020. [Google Scholar]
- U. Shaukat, E. Rossegger, and S. Schlögl, ‘A Review of Multi-Material 3D Printing of Functional Materials via Vat Photopolymerization’, Polymers, vol. 14, no. 12. 2022. DOI: 10.3390/polym14122449. [Google Scholar]
- J. Huang, Q. Qin, and J. Wang, ‘A review of stereolithography: Processes and systems’, Processes, vol. 8, no. 9. 2020. DOI: 10.3390/PR8091138. [Google Scholar]
- Q. Ge et al., ‘Projection micro stereolithography based 3D printing and its applications’, International Journal of Extreme Manufacturing, vol. 2, no. 2. 2020. DOI: 10.1088/2631-7990/ab8d9a. [Google Scholar]
- Y. Bozkurt and E. Karayel, ‘3D printing technology; methods, biomedical applications, future opportunities and trends’, Journal of Materials Research and Technology, vol. 14. 2021. DOI: 10.1016/j.jmrt.2021.07.050. [Google Scholar]
- A. Davoudinejad, ‘Vat photopolymerization methods in additive manufacturing’, in Additive Manufacturing, 2021. DOI: 10.1016/B978-0-12-818411-0.00007-0. [Google Scholar]
- P. Prabhakar et al., ‘3D-Printed Microfluidics and Potential Biomedical Applications’, Frontiers in Nanotechnology, vol. 3. 2021. DOI: 10.3389/fnano.2021.609355. [CrossRef] [Google Scholar]
- A. Sherbaz, B. M. K. Konak, P. Pezeshkpour, B. Di Ventura, and B. E. Rapp, ‘Deterministic Lateral Displacement Microfluidic Chip for Minicell Purification’, Micromachines (Basel), vol. 13, no. 3, 2022, DOI: 10.3390/mi13030365. [Google Scholar]
- A. Farahinia, W. Zhang, and I. Badea, ‘Recent Developments in Inertial and Centrifugal Microfluidic Systems along with the Involved Forces for Cancer Cell Separation: A Review’, Sensors, vol. 23, no. 11. 2023. DOI: 10.3390/s23115300. [CrossRef] [Google Scholar]
- M. Dziubinski, ‘Hydrodynamic Focusing in Microfluidic Devices’, in Advances in Microfluidics, 2012. DOI: 10.5772/34690. [Google Scholar]
- A. Martín-Pérez and D. Ramos, ‘Nanomechanical hydrodynamic force sensing using suspended microfluidic channels’, Microsyst Nanoeng, vol. 9, no. 1, 2023, DOI: 10.1038/s41378-023-00531-1. [Google Scholar]
- A. Shundo, S. Yamamoto, and K. Tanaka, ‘Network Formation and Physical Properties of Epoxy Resins for Future Practical Applications’, JACS Au, vol. 2, no. 7. 2022. DOI: 10.1021/jacsau.2c00120. [Google Scholar]
- R. Saksena, C. Gao, M. Wicox, and A. de Mel, ‘Tubular organ epithelialisation’, Journal of Tissue Engineering, vol. 7. 2016. DOI: 10.1177/2041731416683950. [CrossRef] [Google Scholar]
- B. Michel et al., ‘Printing meets lithography: Soft approaches to high-resolution patterning’, Chimia (Aarau), vol. 56, no. 10, 2002, DOI: 10.2533/000942902777680207. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.