Open Access
Issue
MATEC Web Conf.
Volume 382, 2023
6th International Conference on Advances in Materials, Machinery, Electronics (AMME 2023)
Article Number 01024
Number of page(s) 8
DOI https://doi.org/10.1051/matecconf/202338201024
Published online 26 June 2023
  1. M. Beer, S. Ferson, V. Kreinovich, Imprecise probabilities in engineering analyses, Mechanical Systems and Signal Processing. 37 (2013) 4–29. doi: 10.1016/j.ymssp.2013.01.024. [CrossRef] [Google Scholar]
  2. A. Sandu, C. Sandu, M. Ahmadian, Modeling multibody systems with uncertainties. Part I: Theoretical and computational aspects, Multibody System Dynamics. 15 (2006) 369–391. doi: 10.1007/s11044-006-9007-5. [CrossRef] [Google Scholar]
  3. C. Sandu, A. Sandu, M. Ahmadian, Modeling multibody systems with uncertainties. Part II: Numerical applications, Multibody System Dynamics. 15 (2006) 241–262. doi: 10.1007/s11044-006-9008-4. [CrossRef] [Google Scholar]
  4. A.S. Balu, B.N. Rao, High dimensional model representation based formulations for fuzzy finite element analysis of structures, Finite Elements in Analysis and Design. 50 (2012) 217–230. doi: 10.1016/j.finel.2011.09.012. [CrossRef] [Google Scholar]
  5. D. Behera, S. Chakraverty, Fuzzy finite element analysis of imprecisely defined structures with fuzzy nodal force, Engineering Applications of Artificial Intelligence. 26 (2013) 2458–2466. doi: 10.1016/j.engappai.2013.07.021. [CrossRef] [Google Scholar]
  6. J. Wu, Z. Luo, Y. Zhang, N. Zhang, L. Chen, Interval uncertain method for multibody mechanical systems using Chebyshev inclusion functions, International Journal for Numerical Methods in Engineering. 95 (2013) 608–630. doi: 10.1002/nme.4525. [CrossRef] [Google Scholar]
  7. C. Jiang, R.G. Bi, G.Y. Lu, X. Han, Structural reliability analysis using non-probabilistic convex model, Computer Methods in Applied Mechanics and Engineering. 254 (2013) 83–98. doi: 10.1016/j.cma.2012.10.020. [CrossRef] [Google Scholar]
  8. C. Jiang, X. Han, G.Y. Lu, J. Liu, Z. Zhang, Y.C. Bai, Correlation analysis of non-probabilistic convex model and corresponding structural reliability technique, Computer Methods in Applied Mechanics and Engineering. 200 (2011) 2528–2546. doi: 10.1016/j.cma.2011.04.007. [CrossRef] [Google Scholar]
  9. D. Moens, M. Hanss, Non-probabilistic finite element analysis for parametric uncertainty treatment in applied mechanics: Recent advances, Finite Elements in Analysis and Design. 47 (2011) 4–16. doi: 10.1016/j.finel.2010.07.010. [CrossRef] [Google Scholar]
  10. R.E. Moore, Methods and applications of interval analysis, Prentice Hall, London, 1979. [CrossRef] [Google Scholar]
  11. G. Alefeld, Introductions to interval computations, Academic Press, New York, 1983. [Google Scholar]
  12. Z. Qiu, X. Wang, M.I. Friswell, Eigenvalue bounds of structures with uncertain-but-bounded parameters, Journal of Sound and Vibration. 282 (2005) 297–312. doi: 10.1016/j.jsv.2004.02.051. [CrossRef] [Google Scholar]
  13. S.H. Chen, H.D. Lian, X.W. Yang, Interval eigenvalue analysis for structures with interval parameters, Finite Elements in Analysis and Design. 39 (2003) 419–431. doi: 10.1016/S0168-874X(02)00082-3. [CrossRef] [Google Scholar]
  14. C. Wang, Z. Qiu, X. Wang, D. Wu, Interval finite element analysis and reliability-based optimization of coupled structural-acoustic system with uncertain parameters, Finite Elements in Analysis and Design. 91 (2014) 108–114. doi: 10.1016/j.finel.2014.07.014. [CrossRef] [Google Scholar]
  15. W. Gao, Interval natural frequency and mode shape analysis for truss structures with interval parameters, Finite Elements in Analysis and Design. 42 (2006) 471–477. doi: 10.1016/j.finel.2005.09.003. [CrossRef] [Google Scholar]
  16. Q. Li, Z. Qiu, X. Zhang, Eigenvalue analysis of structures with interval parameters using the second-order Taylor series expansion and the DCA for QB, Applied Mathematical Modelling. 49 (2017) 680– 690. doi: 10.1016/j.apm.2017.02.041. [CrossRef] [Google Scholar]
  17. A. Sofi, G. Muscolino, I. Elishakoff, Natural frequencies of structures with interval parameters, Journal of Sound and Vibration. 347 (2015) 79–95. doi: 10.1016/j.jsv.2015.02.037. [CrossRef] [Google Scholar]
  18. A. Sofi, E. Romeo, A novel Interval Finite Element Method based on the improved interval analysis, Computer Methods in Applied Mechanics and Engineering. 311 (2016) 671–697. doi: 10.1016/j.cma.2016.09.009. [CrossRef] [Google Scholar]
  19. G. Muscolino, A. Sofi, Bounds for the stationary stochastic response of truss structures with uncertain-but-bounded parameters, Mechanical Systems and Signal Processing. 37 (2013) 163–181. doi: 10.1016/j.ymssp.2012.06.016. [CrossRef] [Google Scholar]
  20. S. Tangaramvong, F. Tin-Loi, C. Yang, W. Gao, Interval analysis of nonlinear frames with uncertain connection properties, International Journal of NonLinear Mechanics. 86 (2016) 83–95. doi: 10.1016/j.ijnonlinmec.2016.07.006. [CrossRef] [Google Scholar]
  21. Z. Qiu, Z. Ni, An inequality model for solving interval dynamic response of structures with uncertain-but-bounded parameters, Applied Mathematical Modelling. 34 (2010) 2166–2177. doi: 10.1016/j.apm.2009.10.028. [CrossRef] [Google Scholar]
  22. J. Feng, D. Wu, W. Gao, G. Li, Uncertainty analysis for structures with hybrid random and interval parameters using mathematical programming approach, Applied Mathematical Modelling. 48 (2017) 208–232. doi: 10.1016/j.apm.2017.03.066. [CrossRef] [Google Scholar]
  23. C. Jiang, Z.G. Zhang, Q.F. Zhang, X. Han, H.C. Xie, J. Liu, A new nonlinear interval programming method for uncertain problems with dependent interval variables, European Journal of Operational Research. 238 (2014) 245–253. doi: 10.1016/j.ejor.2014.03.029. [CrossRef] [Google Scholar]
  24. Z. Qiu, X. Wang, Comparison of dynamic response of structures with uncertain-but-bounded parameters using non-probabilistic interval analysis method and probabilistic approach, International Journal of Solids and Structures. 40 (2003) 5423–5439. doi: 10.1016/S0020-7683(03)00282-8. [CrossRef] [Google Scholar]
  25. Z. Qiu, X. Wang, Parameter perturbation method for dynamic responses of structures with uncertain-but-bounded parameters based on interval analysis, International Journal of Solids and Structures. 42 (2005)4958–4970.doi: 10.1016/j.ijsolstr.2005.02.023. [CrossRef] [Google Scholar]
  26. Y. Xia, Z. Qiu, M.I. Friswell, The time response of structures with bounded parameters and interval initial conditions, Journal of Sound and Vibration. 329 (2010) 353–365. doi: 10.1016/j.jsv.2009.09.019. [CrossRef] [Google Scholar]
  27. S. Yin, D. Yu, H. Yin, B. Xia, Interval and random analysis for structure–acoustic systems with large uncertain-but-bounded parameters, Computer Methods in Applied Mechanics and Engineering. 305 (2016) 910–935. doi: 10.1016/j.cma.2016.03.034. [CrossRef] [Google Scholar]
  28. J. Wu, Y. Zhang, L. Chen, Z. Luo, A Chebyshev interval method for nonlinear dynamic systems under uncertainty, Applied Mathematical Modelling. 37 (2013) 4578–4591. doi: 10.1016/j.apm.2012.09.073. [CrossRef] [Google Scholar]
  29. Z. Wang, Q. Tian, H. Hu, Dynamics of spatial rigid– flexible multibody systems with uncertain interval parameters, Nonlinear Dynamics. 84 (2016) 527–548. doi: 10.1007/s11071-015-2504-4. [CrossRef] [Google Scholar]
  30. [30] J. Wu, Z. Luo, N. Zhang, Y. Zhang, A new uncertain analysis method and its application in vehicle dynamics, Mechanical Systems and Signal Processing. 50–51 (2015) 659–675. doi: 10.1016/j.ymssp.2014.05.036. [Google Scholar]
  31. L. Jaulin, Applied interval analysis: with examples in parameter and sate estimation, robust control and robotics, Springer, New York, 2001. [Google Scholar]
  32. N.M. Newmark, A method of computation for structural dynamics, Journal of the Engineering Mechanics Division. 85 (1959) 67–94. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.