Open Access
Issue
MATEC Web Conf.
Volume 382, 2023
6th International Conference on Advances in Materials, Machinery, Electronics (AMME 2023)
Article Number 01023
Number of page(s) 13
DOI https://doi.org/10.1051/matecconf/202338201023
Published online 26 June 2023
  1. Höfer P., Lion A., Modelling of frequency- and amplitude-dependent material properties of filler-reinforced rubber. Journal of the Mechanics and Physics of Solids, 57:500-520, 2009. [CrossRef] [Google Scholar]
  2. Payne A.R., Whittaker R.E., Low strain dynamic properties of filled rubbers. Rubber Chemistry and Technology, 44:440-478, 1971. [CrossRef] [Google Scholar]
  3. Fletcher W.P., Gent A.N., Non-linearity in the dynamic properties of vulcanized rubber compounds. Rubber Chemistry and Technology, 27(1):209-222, 1954. [CrossRef] [Google Scholar]
  4. Mullins L., Softening of rubber by deformation. Rubber Chemistry and Technology, 42:339-362, 1969. [CrossRef] [Google Scholar]
  5. Thorin A., Azoug A., Constantinescu A., Influence of prestrain on mechanical properties of highly-filled elastomers: measurement and modeling. Polymer Testing, 31: 978-986, 2012. [CrossRef] [Google Scholar]
  6. Wollscheid D., Lion A., Predeformation- and frequency-dependent material behavior of filler-reinforced rubber: experiments, constitutive modelling and parameter identification. International Journal of Solid and Structures, 50: 1217-1225, 2013. [CrossRef] [Google Scholar]
  7. Lion A., On the large deformation behavior of reinforced rubber at different temperatures. Journal of the Mechanics and Physics of Solids, 11/12:1805-1834, 1997. [CrossRef] [Google Scholar]
  8. Delattre A., Lejeunes S., Lacroix F., Méo S., On the dynamical behavior of filled rubbers at different temperatures: experimental characterization and constitutive modeling. International Journal of Solids and Structures, 90:178-193, 2016. [CrossRef] [Google Scholar]
  9. Gracia L.A., Liarte E., Pelegay J.L., Calvo B., Finite element simulation of the hysteretic behavior of an industrial rubber. Application to design of rubber components. Finite Elements in Analysis and Design, 46: 357-368, 2010. [CrossRef] [Google Scholar]
  10. Austrell P.E., Modelling of elasticity and damping for filled elastomers. Ph.D. Thesis, Lund University, Sweden, 1997. [Google Scholar]
  11. Berg M., A non-linear rubber spring model for rail vehicle dynamics analysis. Vehicle System Dynamics, 30:197-212, 1998. [Google Scholar]
  12. Scheiblegger C., Roy N., Silva P.O., et al., Non-linear modelling of bushings and cab mounts for calculation of durability loads. SAE Technical Paper 2014-01-0880, 2014. [Google Scholar]
  13. Pfeffer P.E., Hofer K., Simple non-linear model for elastomer and hydro-mountings to optimise overall vehicle simulation. ATZ Worldwide, 2002-5, 2002. [Google Scholar]
  14. Sjőberg M., Kari L., Non-linear behavior of a rubber isolator system using fractional derivatives. Vehicle System Dynamics, 37(3):217–236, 2002. [Google Scholar]
  15. Sjőberg M., Kari L., Nonlinear isolator dynamics at finite deformations: An effective hyperelastic, fractional derivative, generalized friction model. Nonlinear Dynamics, 33:32-336, 2003. [Google Scholar]
  16. Alonso A., Gil-Negrete N., Nieto J., et al., Development of a rubber component model suitable for being implemented in railway dynamic simulation programs. Journal of Sound and Vibration, 332:3032-3048, 2013. [CrossRef] [Google Scholar]
  17. Gil-Negrete N., On the modelling and dynamic stiffness prediction of rubber isolators. Ph.D Thesis, University of Navarra, Spain, 2004. [Google Scholar]
  18. Ramrakhyani D.S., Lesieutre G.A., Smith E.C., Modelling of elastomeric materials using nonlinear fractional derivative and continuously yielding friction elements. International Journal of Solids and Structures, 41: 3929-3948, 2004. [CrossRef] [Google Scholar]
  19. Bouc R., Modèle mathéatique d’hystérésis, Acustica, 24:16-25, 1971. [Google Scholar]
  20. Wen Y.K., Method of random vibration of hysteretic systems. Journal of the Engineering Mechanics Division, 102(2):249-26, 1976. [CrossRef] [Google Scholar]
  21. Spencer B.F., Dyke S.J., Sain M.K., Carlson J.D., Phenomenological model for magnetorheological dampers. Journal of Engineering Mechanics, 123(3):230-238, 1997. [CrossRef] [Google Scholar]
  22. Ok J.K., Yoo W.S., Sohn J.H., New nonlinear bushing model for general excitations using BoucWen hysteretic model. International Journal of Automotive Technology, 9:183-190, 2008. [CrossRef] [Google Scholar]
  23. Coveney V.A., Johnson D.E., Turner D.M., Rate-dependent modeling of a highly filled vulcanizate. Rubber Chemistry Technology, 73:565-577, 2000. [CrossRef] [Google Scholar]
  24. Puel G., Bourgeteau B., Aubry D., Parameter identification of nonlinear time-dependent rubber bushings models towards their integration in multibody simulations of a vehicle chassis. Mechanical Systems and Signal Processing, 36:354-369, 2013. [CrossRef] [Google Scholar]
  25. Mooney M., A theory of large elastic deformation. Journal of Applied Physics, 11:582-592, 1940. [CrossRef] [Google Scholar]
  26. Rivlin R.S., Saunders D.W., Large elastic deformations of isotropic materials VII. Experiments on the deformation of rubber. Philosophical Transactions of the Royal Society Biological Sciences, A243:251-288, 1950. [Google Scholar]
  27. Yeoh O.H., Some forms of the strain energy functions for rubber. Rubber Chemistry and Technology, 66:754-771, 1993. [CrossRef] [Google Scholar]
  28. Yeoh O.H., On the Ogden strain-energy function, Rubber Chemistry and Technology 70:175–182, 1997. [CrossRef] [Google Scholar]
  29. Ogden R.W., Non-linear elastic deformations. Ellis Horwood, Chichester, 1984. [Google Scholar]
  30. Arruda E.M., Boyce M.C., A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. Journal of the Mechanics and Physics of Solids, 41:389–412, 1993. [CrossRef] [Google Scholar]
  31. Vandenbroucke A., Laurent H., Hocine N., Rio G., A hyperelasto visco hysteresis model for an elastomeric behavior: experimental and numerical investigations. Computational Materials Science, 48: 495-503, 2010. [CrossRef] [Google Scholar]
  32. Hasanpour K., Ziaei-Rad S., Finite element simulation of polymer behavior using a three-dimensional, finite deformation constitutive model. Computers and Structures, 86:1643-1655, 2008. [CrossRef] [Google Scholar]
  33. Lin R.C., Schomburg U., A finite elastic– viscoelastic–elastoplastic material law with damage: theoretical and numerical aspects. Computer Methods in Applied Mechanics and Engineering, 192(13):1591-1627, 2003. [CrossRef] [Google Scholar]
  34. Gil-Negrete N., Viñolas J., Kari L., A simplified methodology to predict the dynamic stiffness of carbon-black filled rubber isolators using a finite element code. Journal of Sound and Vibration, 296: 757-776, 2006. [CrossRef] [Google Scholar]
  35. Gil-Negrete N., Viñolas J., Kari L., A nonlinear rubber material model combining fractional order viscoelasticity and amplitude dependent effects. ASME Journal of Applied Mechanics, 76: 011009-1, 2009. [CrossRef] [Google Scholar]
  36. Enelund M., Mahler L., Runesson K., Josefson B., Formulation and integration of the standard linear viscoelastic solid with fractional order rate laws. International Journal of Solids and Structures, 36:2417-2442, 1999. [CrossRef] [Google Scholar]
  37. Adolfsson K., Enelund M., Fractional derivative viscoelasticity at large deformation. Nonlinear Dynamics, 33:301-321, 2003. [CrossRef] [Google Scholar]
  38. Schmidt A., Gaul L., Finite element formulation of viscoelastic constitutive equations using fractional time derivatives. Nonlinear Dynamics, 29:37-55, 2002. [CrossRef] [Google Scholar]
  39. Kraus G., Mechanical losses in carbon black filled rubbers. Journal of applied Polymer Science, 39:75-92, 1984. [Google Scholar]
  40. Ulmer J.D., Strain dependence of dynamic mechanical properties of carbon black filled rubber compounds. Rubber Chemistry and Technology, 69:15-47, 1995. [Google Scholar]
  41. Kaliske M., Rothert H., Constitutive approach to rate-independent properties of filled elastomers. International Journal of Solids and Structures, 35: 2057-2071, 1998. [CrossRef] [Google Scholar]
  42. Rabkin M., Brüger T., Hinsch P., Material model and experimental testing of rubber components under cyclic deformation. Proceedings of the Third Conference on Constitutive Models for Rubbers, 319-324, 2003. [Google Scholar]
  43. Austrell E.,Olsson A.K., Jonsson M., A method to analyze the nonlinear dynamic behavior of carbon-black filled rubber components using standard FE codes. Proceedings of the Second Conference on Constitutive Models for Rubbers, 231-235, 2001. [Google Scholar]
  44. Lee S.B., Wineman A., A model for non-linear viscoelastic coupled mode response of an elastomeric bushing. International Journal of Non-Linear Mechanics, 35:177-199, 2000. [CrossRef] [Google Scholar]
  45. Kadlowec J., Wineman A., Hulbert G., Elastomer bushing response: experiments and finite element modeling. Acta Mechanica, 163:25-38, 2003. [CrossRef] [Google Scholar]
  46. Kadlowec J., Gerrard D., Pearlman H., Coupled axial-torsional behavior of cylindrical elastomer bushings. Polymer Testing, 28:139-144, 2009. [CrossRef] [Google Scholar]
  47. Naghdabadi R., Baghani M., Arghavani J., A viscoelastic constitutive model for compressible polymers based on logarithmic strain and its finite element implementation. Finite Elements in Analysis and Design, 62:18-27, 2012. [CrossRef] [Google Scholar]
  48. Khajehsaeid H., Arghavani J., Naghdabadi R., Sohrabpour S., A visco-hyperelastic constitutive model for rubber-like materials: A rate-dependent relaxation time scheme. International Journal of Engineering Science, 79:44-58, 2014. [CrossRef] [Google Scholar]
  49. Hasanpour K., Ziaei-Rad S., Mahzoon M., A large deformation framework for compressible viscoelastic materials: Constitutive equations and finite element implementation. International Journal of Plasticity, 25: 1154-1176, 2009. [CrossRef] [Google Scholar]
  50. Khajehsaeid H., Baghani M., Naghdabadi R., Finite strain numerical analysis of elastomeric bushings under multi-axial loading: a compressible viscohyperelastic approach. International Journal of Mechanics and Materials in Design, 9:385-399, 2013. [CrossRef] [Google Scholar]
  51. Ok J.K., Sohn J.H., Yoo W.S., Development of nonlinear coupled mode bushing model based on the Bouc-Wen hysteretic model. Proceedings of the ASME 2007 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, DETC2007-34721, Las Vegas, Nevada, USA, 2007. [Google Scholar]
  52. Abaqus 6.13 Example Problems Guide, 2013. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.