Open Access
Issue
MATEC Web Conf.
Volume 382, 2023
6th International Conference on Advances in Materials, Machinery, Electronics (AMME 2023)
Article Number 01021
Number of page(s) 4
DOI https://doi.org/10.1051/matecconf/202338201021
Published online 26 June 2023
  1. X. Liu, R.T. Guo, K. Ni, et al. Reconstruction-Determined Alkaline Water Electrolysis at Industrial Temperatures, Advanced Material, vol. 32 (2020), 2001136. [CrossRef] [Google Scholar]
  2. M.H. Ning, F.H. Zhang, L.B. Wu, et al. Boosting efficient alkaline fresh water and seawater electrolysis via electrochemical reconstruction, Energy & Environmental Science vol. 15 (2022), 3945-3957. [CrossRef] [Google Scholar]
  3. J. Wang, Y. Gao, H. Kong, et al. Non-precious-metal catalysts for alkaline water electrolysis: operando characterizations, theoretical calculations, and recent advances, Chemical Society Reviews, vol. 49 (2020), 9154-9196. [CrossRef] [Google Scholar]
  4. S.Q. Jiang, H.L. Suo, X.B. Zheng, et al. Lightest Metal Leads to Big Change: Lithium-Mediated Metal Oxides for Oxygen Evolution Reaction, Advanced Energy Material, vol. 12 (2022), 2201934. [CrossRef] [Google Scholar]
  5. P. Wang, S.Q. Zhang, Z.B. Wang, et al. Manganese-based oxide electrocatalysts for the oxygen evolution reaction: a review, Journal of Materials Chemistry A, vol. 11 (2023), 5476-5494. [CrossRef] [Google Scholar]
  6. W. Shi, W. Lee, J.M. Xue, et al. Recent Development of Mn-based Oxides as Zinc-Ion Battery Cathode, Chemsuschem vol. 14 (2021), 1634-1658. [CrossRef] [Google Scholar]
  7. C.C. Gowda, A. Mathur, A. Parui, et al. Understanding the electrocatalysis OER and ORR activity of ultrathin spinel Mn3O4, Journal of Industrial and Engineering Chemistry, vol. 113 (2022),153-160. [CrossRef] [Google Scholar]
  8. Q. Huang, X. Zhong, Q. Zhang, et al. Co3O4/Mn3O4 hybrid catalysts with heterointerfaces as bifunctional catalysts for Zn-air batteries, Journal of Energy Chemistry, vol. 68 (2022), 679-687. [CrossRef] [Google Scholar]
  9. H. Xue, A. Meng, T. Yang, et al. Controllable oxygen vacancies and morphology engineering: Ultra-high HER/OER activity under base–acid conditions and outstanding antibacterial properties, Journal of Energy Chemistry, vol. 71 (2022), 639-651. [CrossRef] [Google Scholar]
  10. K. Ham, S. Hong, S. Kang, et al. Extensive Active-Site Formation in Trirutile CoSb2O6 by Oxygen Vacancy for Oxygen Evolution Reaction in Anion Exchange Membrane Water Splitting, ACS Energy Letters, vol. 6 (2021), 364-370. [CrossRef] [Google Scholar]
  11. Y. Yan, J. Lin, T. Xu, et al. Atomic-Level Platinum Filling into Ni-Vacancies of Dual-Deficient NiO for Boosting Electrocatalytic Hydrogen Evolution, Advanced Energy Material, vol. 12 (2022), 2200434. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.