Open Access
MATEC Web Conf.
Volume 382, 2023
6th International Conference on Advances in Materials, Machinery, Electronics (AMME 2023)
Article Number 01017
Number of page(s) 7
Published online 26 June 2023
  1. Luo, Y., Tang, Y., Zheng, S., Yan, Y., Xue, H., & Pang, H. 2018. Dual anode materials for lithium- and sodium-ion batteries. Journal of Materials Chemistry A, 6(10): 4236-4259. [CrossRef] [Google Scholar]
  2. Wang, F., Wu, X., Li, C., Zhu, Y., Fu, L., Wu, Y., & Liu, X. 2016. Nanostructured positive electrode materials for post-lithium ion batteries. Energy & Environmental Science, 9(12): 3570-3611. [CrossRef] [Google Scholar]
  3. Balogun, M.-S., Qiu, W., Luo, Y., Meng, H., Mai, W., Onasanya, A., Olaniyi, T. K., & Tong, Y. 2016. A review of the development of full cell lithium-ion batteries: The impact of nanostructured anode materials. Nano Research, 9(10): 2823-2851. [CrossRef] [Google Scholar]
  4. Takeda, Y., Yamamoto, O., & Imanishi, N. 2016. Lithium Dendrite Formation on a Lithium Metal Anode from Liquid, Polymer and Solid Electrolytes. Electrochemistry, 84(4): 210-218. [CrossRef] [Google Scholar]
  5. Ren, Y., Xiang, L., Yin, X., Xiao, R., Zuo, P., Gao, Y., Yin, G., & Du, C. 2022. Ultrathin Si Nanosheets Dispersed in Graphene Matrix Enable Stable Interface and High Rate Capability of Anode for Lithium‐ion Batteries. Advanced Functional Materials, 32(16). [Google Scholar]
  6. Wiggers, H., Sehlleier, Y. H., Kunze, F., Xiao, L., Schnurre, S. M., & Schulz, C. 2020. Self-assembled nano-silicon/graphite hybrid embedded in a conductive polyaniline matrix for the performance enhancement of industrial applicable lithium-ion battery anodes. Solid State Ionics, 344. [Google Scholar]
  7. Zhang, Y., Liu, Z., Zhu, C., Guo, X., Liu, W., & Qu, Y. 2021. Boosting anode performance of mesoporous Si by embedding copper nanoparticles. Journal of Alloys and Compounds, 850. [Google Scholar]
  8. Zhu, C., Zhang, Y., Ma, Z., Zhu, Y., & Li, L. 2020. Mesoporous-Si embedded and anchored by hierarchical Sn nanoparticles as promising anode for lithium-ion batteries. Journal of Alloys and Compounds, 832. [Google Scholar]
  9. Bensalah, N., Matalkeh, M., Mustafa, N. K., & Merabet, H. 2019. Binary Si–Ge Alloys as High‐ Capacity Anodes for Li‐Ion Batteries. physica status solidi (a), 217(1). [Google Scholar]
  10. Bensalah, N., Kamand, F. Z., Mustafa, N., & Matalqeh, M. 2019. Silicon–Germanium bilayer sputtered onto a carbon nanotube sheet as anode material for lithium–ion batteries. Journal of Alloys and Compounds, 811. [Google Scholar]
  11. Ma, K., & Lin, N. 2019. The controllable synthesis of Si/Ge composites with a synergistic effect for enhanced Li storage performance. Inorganic Chemistry Frontiers, 6(7): 1897-1903. [CrossRef] [Google Scholar]
  12. Zhang, J., Hou, Z.-L., Zhang, X., & Li, C. 2022. Si@Cu composite anode material prepared by magnetron sputtering for high-capacity lithium-ion batteries. International Journal of Hydrogen Energy, 47(7): 4766-4771. [CrossRef] [Google Scholar]
  13. Hong, J., Cheng, K., Xu, G., Stapelberg, M., Kuai, Y., Sun, P., Qu, S., Zhang, Z., Geng, Q., Wu, Z., Zhu, M., & Braun, P. V. 2021. Novel silicon/copper nanowires as high-performance anodes for lithium ion batteries. Journal of Alloys and Compounds, 875. [Google Scholar]
  14. Chen, Z., Wang, X., Jian, T., Hou, J., Zhou, J., & Xu, C. 2020. One-step mild fabrication of branch-like multimodal porous Si/Zn composites as high performance anodes for Li-ion batteries. Solid State Ionics, 354 [Google Scholar]
  15. He, Q., Wu, Q., Wang, X., Fu, S., Huang, S., Tong, S., Cao, Y., Liu, Z., & Wu, M. 2021. An Anode Material for Lithium Storage: Si@N,S-Doped Carbon Synthesized via In Situ Self-Polymerization. ACS Applied Energy Materials, 4(4): 3555-3562. [CrossRef] [Google Scholar]
  16. Zhu, H., Shiraz, M. H. A., Liu, L., Zhang, Y., & Liu, J. 2022. Atomic layer deposited aluminum oxynitride coating for high-performance Si anode in lithium-ion batteries. Applied Surface Science, 578. [Google Scholar]
  17. Park, S.-W., Ha, J. H., Park, J. M., Cho, B. W., & Choi, H.-J. 2021. Enhanced capacity retention based silicon nanosheets electrode by CMC coating for lithium-ion batteries. Electronic Materials Letters, 17 (3): 268-276. [CrossRef] [Google Scholar]
  18. Li, N., Yi, Z., Lin, N., & Qian, Y. 2019. An Al(2) O(3) coating layer on mesoporous Si nanospheres for stable solid electrolyte interphase and high-rate capacity for lithium ion batteries. Nanoscale, 11 (36): 16781-16787. [CrossRef] [Google Scholar]
  19. Ye, H., Zheng, G., Yang, X., Zhang, D., Zhang, Y., Yan, S., You, L., Hou, S., & Huang, Z. 2021. Application of different carbon-based transition metal oxide composite materials in lithium-ion batteries. Journal of Electroanalytical Chemistry, 898. [Google Scholar]
  20. Wang, F., Wang, C., Chen, H., Zhang, W., Jiang, R., Yan, Z., Huang, Z., Zhou, H., & Kuang, Y. 2019. A composite of Fe3O4@C and multilevel porous carbon as high-rate and long-life anode materials for lithium ion batteries. Nanotechnology, 30(33). [Google Scholar]
  21. Hong, M., Su, Y., Zhou, C., Yao, L., Hu, J., Yang, Z., Zhang, L., Zhou, Z., Hu, N., & Zhang, Y. 2019. Scalable synthesis of γ-Fe2O3/CNT composite as high-performance anode material for lithium-ion batteries. Journal of Alloys and Compounds, 770: 116-124. [CrossRef] [Google Scholar]
  22. Li, J., Li, Y., Chen, X., Kierzek, K., Shi, X., Chu, P. K., Tang, T., & Mijowska, E. 2019. Selective Synthesis of Magnetite Nanospheres with Controllable Morphologies on CNTs and Application to Lithium-Ion Batteries. Physica Status Solidi a- Applications and Materials Science, 216(11). [Google Scholar]
  23. Wu, Q., Jiang, R., & Liu, H. 2020. Carbon layer encapsulated Fe3O4@Reduced graphene oxide lithium battery anodes with long cycle performance. Ceramics International, 46(8): 12732-12739. [CrossRef] [Google Scholar]
  24. Zhang, H. 2020. Facile synthesis of hollow Fe3O4 nanospheres and their application as drug delivery carrier and anode for lithium-ion batteries. International Journal of Electrochemical Science: 4789-4797. [Google Scholar]
  25. Lv, H., Feng, X., Bi, H., & Song, X. 2022. Anemoneshaped Fe3O4 Micro-structures as the Anode Materials in High Electrochemical Performance Liion Batteries. International Journal of Electrochemical Science, 17(5). [Google Scholar]
  26. i, Y., Song, J., Pan, Y., Luo, C., Chen, J., Sui, Z., & Tian, Q. 2023. Integration strategy for facile fabrication of porous carbon coated Fe3O4 nanospindles with enhanced lithium storage. Journal of Alloys and Compounds, 935. [Google Scholar]
  27. Singh, J., Lee, S., Kim, S., Singh, S. P., Kim, J., & Rai, A. K. 2021. Improved lithium storage in Fe2O3 nanoparticles over nanorods morphology. Solid State Ionics, 362. [Google Scholar]
  28. Li, C., Su, H., Zhang, K., Liu, Z., Wang, H., & Li, D. 2021. FeOOH derived urchin-like Fe2O3@C as superior anode for sodium ion storage. Journal of Alloys and Compounds, 858: 157714. [CrossRef] [Google Scholar]
  29. Zhao, X., Jia, Y., & Liu, Z.-H. 2019. GO-graphene ink-derived hierarchical 3D-graphene architecture supported Fe3O4 nanodots as high-performance electrodes for lithium/sodium storage and supercapacitors. Journal of Colloid and Interface Science, 536: 463-473. [CrossRef] [Google Scholar]
  30. Yu, M., Sun, L., & Ning, X. 2021. Controllable synthesis of carbon-coated Fe3O4 nanorings with high Li/Na storage performance. Journal of Alloys and Compounds, 878. [Google Scholar]
  31. Zhao, P., Jiang, L., Li, P., Xiong, B., Zhou, N., Liu, C., Jia, J., Ma, G., & Zhang, M. 2023. Tailored engineering of Fe3O4 and reduced graphene oxide coupled architecture to realize the full potential as electrode materials for lithium-ion batteries. Journal of Colloid and Interface Science, 634: 737-746. [CrossRef] [Google Scholar]
  32. Zhang, R., Bao, S., Tan, Q., Li, B., Wang, C., Shan, L., Wang, C., & Xu, B. 2021. Facile synthesis of a rod-like porous carbon framework confined magnetite nanoparticle composite for superior lithium-ion storage. J Colloid Interface Sci, 600: 602-612. [CrossRef] [Google Scholar]
  33. Duan, Y.-J., Zhao, D.-L., Liu, X.-H., Yang, H.-X., Meng, W.-J., Zhao, M., Tian, X.-M., & Han, X.-Y. 2019. Novel design of Fe3O4/hollow graphene spheres composite for high performance lithium-ion battery anodes. Journal of Alloys and Compounds, 779: 466-473. [CrossRef] [Google Scholar]
  34. Shi, X., Yao, Q., Wu, H., Zhao, Y., & Guan, L. 2019. Rational design of multi-walled carbon nanotube@hollow Fe ( 3 ) O ( 4 ) @C coaxial nanotubes as long-cycle-life lithium ion battery anodes. Nanotechnology, 30(46): 465402. [CrossRef] [Google Scholar]
  35. Wang, B., Luan, S., Peng, Y., Zhou, J., Hou, L., & Gao, F. 2021. High electrochemical performance of Fe(2)O(3)@OMC for lithium-ions batteries. Nanotechnology, 32(12): 125403. [CrossRef] [Google Scholar]
  36. Ma, L., Wang, Z., Tian, S., Liu, X., Li, Z., Huang, J., Deng, X., & Huang, Y. 2020. The alpha-Fe(2)O ( 3 ) /graphite anode composites with enhanced electrochemical performance for lithium-ion batteries. Nanotechnology, 31(43): 435404. [CrossRef] [Google Scholar]
  37. Meng, X., Huang, J., Zhu, G., Xu, Y., Zhu, S., Li, Q., Chen, M., & Lin, M.-C. 2022. Fe2O3 nanoparticles anchored on thermally oxidized graphene for boosting lithium storage properties. Journal of Solid State Chemistry, 315. [Google Scholar]
  38. Liu, Z., Liu, L., Zhao, Z., He, J., Wang, S., & Xiong, C. 2020. Structural engineering of porous N-doped carbon-coated Fe3O4 framework by controlling coordination for superior lithium-ion full-cell. Applied Surface Science, 526. [Google Scholar]
  39. Wu, W., Wei, Y., Chen, H., Wei, K., Li, Z., He, J., Deng, L., Yao, L., & Yang, H. 2021. In-situ encapsulation of α-Fe2O3 nanoparticles into ZnFe2O4 micro-sized capsules as high-performance lithium-ion battery anodes. Journal of Materials Science & Technology, 75: 110-117. [CrossRef] [Google Scholar]
  40. Li, W., Yang, F., Rui, Y., & Tang, B. 2019. Strong covalent interaction Fe2O3/nitrogen-doped porous carbon fiber hybrids as free-standing anodes for lithium-ion batteries. Journal of Materials Science, 54(8): 6500-6514. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.