Open Access
Issue |
MATEC Web Conf.
Volume 382, 2023
6th International Conference on Advances in Materials, Machinery, Electronics (AMME 2023)
|
|
---|---|---|
Article Number | 01015 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/matecconf/202338201015 | |
Published online | 26 June 2023 |
- SELVAKUMARAN D, PAN A, LIANG S, et al. A review on recent developments and challenges of catherde materials for rechargeable aqueous Zn-ion patterns [J]. Journal of Materials Chemistry A, 2019, 7 (31): 18209-36. [CrossRef] [Google Scholar]
- SONG M, TAN H, CHAO D, et al. Recent Advances in Zn-Ion Batteries [J]. Advanced Functional Materials, 2018, 28 (41). [Google Scholar]
- SHI Y, CHEN Y, SHI L, et al. An Overview and Future Perspectives of Rechargeable Zinc Batteries [J]. Small, 2020, 16 (23): e2000730. [CrossRef] [Google Scholar]
- ZHANG Q, LUAN J, TANG Y, et al. Interfacial Design of Dendrite-Free Zinc Anodes for Aquous Zinc-Ion Batteries [J]. Angew Chem Int Ed Engl, 2020, 59 (32): 13180-91. [CrossRef] [Google Scholar]
- LV T, PENG Y, ZHANG G, et al. How About Vanadium-Based Compounds as Cathode Materials for Aquous Zinc Ion Batteries? [J]. Adv Sci (Weinh), 2023: e2206907. [Google Scholar]
- ZHAO Y, ZHU Y, ZHANG X. Challenges and perspectives for manganese-based oxides for advanced aqueous zinco-ion battles [J]. InfoMat, 2019, 2 (2): 237-60. [Google Scholar]
- YADAV P, KUMARI N, RAI A K. A review on solutions to overcome the structural transformation of manganese dioxide-based cathodes for aqueous rechargeable zinc ion batteries [J]. Journal of Power Sources, 2023, 555. [Google Scholar]
- HUANG S, ZHU J, TIAN J, et al. Recent Progress in the Electrolytes of Aquous Zinc-Ion Batteries [J]. Chemistry, 2019, 25 (64): 14480-94. [CrossRef] [Google Scholar]
- CAO Z, ZHUANG P, ZHANG X, et al. Strategies for Dendrite-Free Anode in Aquous Rechargeable Zinc Ion Batteries [J]. Advanced Energy Materials, 2020, 10 (30). [Google Scholar]
- LI X, CHEN Z, YANG Y, et al. The phosphate cathodes for aqueous zinc-ion batteries [J]. Inorganic Chemistry Frontiers, 2022, 9 (16): 3986-98. [CrossRef] [Google Scholar]
- ZHANG Y, CHEN A, SUN J. Promise and challenge of vanadium-based cathodes for aqueous zinc-ion batteries [J]. Journal of Energy Chemistry, 2021, 54: 655-67. [CrossRef] [Google Scholar]
- MING J, GUO J, XIA C, et al. Zinc-ion battles: Materials, mechanisms, and applications [J]. Materials Science and Engineering: R: Reports, 2019, 135: 58-84. [CrossRef] [Google Scholar]
- MATHEW V, SAMBANDAM B, KIM S, et al. Manganese and Vanadium Oxide Cathodes for Aquous Rechargeable Zinc-Ion Batteries: A Focused View on Performance, Mechanism, and Developments [J]. ACS Energy Letters, 2020, 5 (7): 2376-400. [CrossRef] [Google Scholar]
- DU W, ANG E H, YANG Y, et al. Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion battles [J]. Energy & Environmental Science, 2020, 13 (10): 3330-60. [CrossRef] [Google Scholar]
- XIONG T, ZHANG Y, LEE W S V, et al. Defect Engineering in Manganese-Based Oxides for Aquous Rechargeable Zinc-Ion Batteries: A Review [J]. Advanced Energy Materials, 2020, 10 (34). [Google Scholar]
- ZAMPARDI G, LA MANTIA F. Prussian blue analogues as aqueous Zn-ion battle elections: Current challenges and future perspectives [J]. Current Opinion in Electro Chemistry, 2020, 21: 84-92. [CrossRef] [Google Scholar]
- LU K. Construction of advanced energy storage systems through rational design of material combination and kinectice balance. Jinan: Dissertation For Doctoral Degree of Shandong University [D], 2018. [Google Scholar]
- LIU Y, WU X. Strategies for constructing manganese-based oxide electrical materials for aqueous rechargeable zincon batters [J]. Chinese Chemical Letters, 2022, 33 (3): 1236-44. [CrossRef] [Google Scholar]
- HE B, HUANG J, JI P, et al. Al doped manganous oxide for high-performance aquous Zn-ion batteries [J]. Journal of Power Sources, 2023, 554. [Google Scholar]
- HAO J, MOU J, ZHANG J, et al. Electrically induced spinel-layered phase transition of Mn3O4 in high performance neutral aqueous rechargeable zinc battle [J]. Electro Chimica Acta, 2018, 259: 170-8. [CrossRef] [Google Scholar]
- ZHANG D, CAO J, ZHANG X, et al. Institution of Manganese Dissolution in Mn2O3Cathode with Controllable Ni2 + Incorporation for High-Performance Zinc Ion Battery [J]. Advanced Functional Materials, 2021, 31 (14). [Google Scholar]
- TANG B, SHAN L, LIANG S, et al. Issues and opportunities facing aqueous zinc-ion batteries [J]. Energy & Environmental Science, 2019, 12 (11): 3288-304. [CrossRef] [Google Scholar]
- WANG J, WANG J G, LIU H, et al. A Highly Flexible and Lightweight MnO2/Graphene Membrane for Superior Zinc-Ion Batteries [J]. Advanced Functional Materials, 2020, 31 (7). [Google Scholar]
- CAO J, ZHANG D, ZHANG X, et al. Mechanochemical reactions of MnO2 and graphic nanosheets as a durable zinc ion battle cathede [J]. Applied Surface Science, 2020, 534. [Google Scholar]
- WANG C, ZENG Y, XIAO X, et al. γ-MnO2 nanorods/graphene composite as efficient cathode for advanced rechargeable aqueous zinc-ion battle [J]. Journal of Energy Chemistry, 2020, 43: 182-7. [CrossRef] [Google Scholar]
- ZUO Y, MENG T, TIAN H, et al. Enhanced H (+) Storage of a MnO (2) Cathode via a MnO (2) Nanolayer Interphase Transformed from Manganese Phosphate [J]. ACS Nano, 2023. [Google Scholar]
- SUN T, NIAN Q, ZHENG S, et al. Layered Ca (0.28) MnO (2). 0.5 H (2) O as a High Performance Cathode for Aquous Zinc-Ion Battery [J]. Small, 2020, 16 (17): e2000597. [CrossRef] [Google Scholar]
- LI J, KUANG Q, WANG G, et al. Galvanostatic timed Na3Mn2 (P2O7) (PO4) as a high-voltage cathode material for aqueous zincion batters [J]. Electrochimica Acta, 2023, 441. [Google Scholar]
- TAN S, SANG Z, YI Z, et al. Conductive coating, cation-intercalation, and oxygen vacancies comodified vanadium oxides as high-rate and stable cathodes for aqueous zinco-ion batteries [J]. EcoMat, 2023. [Google Scholar]
- XU D, WANG H, LI F, et al. Conformal Conducting Polymer Shells on V2O5 Nanoheet Arrays as a High Rate and Stable Zinc-Ion Battery Cathode [J]. Advanced Materials Interfaces, 2019, 6 (2). [Google Scholar]
- CHO S-H, PARK J-S, KIM J H, et al. Oxygen-Related Defect Engineering of Amorous Vanadium Pentoxide Cathode for Achieving High-Performance Thin-Film Aquous Zinc-Ion Batteries [J]. ACS Applied Energy Materials, 2023, 6 (5): 2719-27. [CrossRef] [Google Scholar]
- CHEN L, YANG Z, CUI F, et al. Enhanced rate and cycling performances of hollow V2O5 nanospheres for aquous zinc ion battle cathede [J]. Applied Surface Science, 2020, 507. [Google Scholar]
- DENG W, XU Z, LI G, et al. Self-Transformation Strategy Toward Vanadium Dioxide Cathode for Advanced Aquous Zinc Batteries [J]. Small, 2023: e2207754. [Google Scholar]
- ZHANG W, TANG C, LAN B, et al. K0. 23V2O5 as a promotion catherde material for rechargeable aqueous zinc ion battles with excellent performance [J]. Journal of Alloys and Compounds, 2020, 819. [Google Scholar]
- YANG W, YANG W, HUANG Y, et al. Reversible aqueous zinc-ion battle based on ferric vanadate cathode [J]. Chinese Chemical Letters, 2022, 33 (10): 4628-34. [CrossRef] [Google Scholar]
- QU G, GUO K, CHEN W, et al. Cs-Induced Phase Transformation of Vanadium Oxide for High-Performance Zinc-Ion Batteries [J]. Energy & Environmental Materials, 2023. [Google Scholar]
- LIU Z, PULLETIKURTHI G, ENDRES F. A Prussian Blue/Zinc Secondary Battery with a Bio-Ionic Liquid-Water Mixture as Electrolyte [J]. ACS Appl Mater Interfaces, 2016, 8 (19): 12158-64. [CrossRef] [Google Scholar]
- ZENG Y, LU X F, ZHANG S L, et al. Construction of Co-Mn Prussian Blue Analog Hollow Spheres for Efficient Aquous Zn-ion Batteries [J]. Angew Chem Int Ed Engl, 2021, 60 (41): 22189-94. [CrossRef] [Google Scholar]
- LIU Y, LI Z, HAN Y, et al. Highly Stable Metal-Organic Framework with Redox-Active Naphthalene Diimide Core as Cathode Material for Aquous Zinc-Ion Batteries [J]. ChemSusChem, 2023: e202202305. [Google Scholar]
- ZHANG J, JIA W, YANG H, et al. Cerium oxide as cathode material for aqueous zinc-ion battle [J]. Solid State Ionics, 2023, 391. [Google Scholar]
- LI C, XIE X, LIANG S, et al. Issues and Future Perspective on Zinc Metal Anode for Rechargeable Aquous Zinc-ion Batteries [J]. Energy & Environmental Materials, 2020, 3 (2): 146-59. [CrossRef] [Google Scholar]
- LU X, ZHAO C, CHEN A, et al. Reducing Zn-ion concentration gradient by SO 42-immobilized interface coating for dendrite-free Zn anode [J]. Chemical Engineering Journal, 2023, 451. [Google Scholar]
- YANG Q, LI Q, LIU Z, et al. Dendrites in Zn-Based Batteries [J]. Adv Mater, 2020, 32 (48): e2001854. [CrossRef] [Google Scholar]
- LIU M-C, TIAN C-Y, ZHANG D-T, et al. Design on modified-zinc anode with dendrite-and side actionsfree by hydrophobic organic-inorganic hybrids for ultra-stable zinc ion batters [J]. Nano Energy, 2022, 103. [Google Scholar]
- LIU Y, LIU Y, WU X. Toward Long-Life Aquous Zinc Ion Batteries by Constructing Stable Zinc Anodes [J]. Chem Rec, 2022, 22 (10): e202200088. [Google Scholar]
- ZENG L, HE H, CHEN H, et al. 3D Printing Architecting Reservation-Integrated Anode for Dendrite-Free, Safe, and Durable Zn Batteries [J]. Advanced Energy Materials, 2022, 12 (12). [Google Scholar]
- CAO Q, GAO Y, PU J, et al. Gradient design of imprinted anode for stable Zn-ion batters [J]. Nat Commun, 2023, 14 (1): 641. [CrossRef] [Google Scholar]
- WU B, GUO B, CHEN Y, et al. High Zinc Utilization Aquous Zinc Ion Batteries Enabled by 3D Printed Graphene Arrays [J]. Energy Storage Materials, 2023, 54: 75-84. [CrossRef] [Google Scholar]
- WU C, SUN C, REN K, et al. 2-methyl imidazole electrolyte additive enabling ultra-stable Zn anode [J]. Chemical Engineering Journal, 2023, 452. [Google Scholar]
- WANG M, WU X, YANG D, et al. A colloidal aqueous electronic modulated by oleic acid for durable zinc metal anode [J]. Chemical Engineering Journal, 2023, 451. [Google Scholar]
- XU X, SONG M, LI M, et al. A novel bifunctional zinc gluconate electrolyte for a stable Zn anode [J]. Chemical Engineering Journal, 2023, 454. [Google Scholar]
- LIU H, ZHOU Q, XIA Q, et al. Interface challenges and optimization strategies for aqueous zinc-ion battles [J]. Journal of Energy Chemistry, 2023, 77: 642-59. [CrossRef] [Google Scholar]
- DU Y, LI Y, XU B B, et al. Electrolyte Salts and Additives Regulation Enables High Performance Aquous Zinc Ion Batteries: A Mini Review [J]. Small, 2022, 18 (43): e2104640. [CrossRef] [Google Scholar]
- MA R, XU Z, WANG X. Polymer Hydrogel Electrolytes for Flexible and Multifunctional Zincc-Ion Batteries and Capacitors [J]. Energy & Environmental Materials, 2023. [Google Scholar]
- HAN M, LI T C, LI D S, et al. Electrolyte Modulation Strategies for High Performance Zinc Batteries [J]. Batteries & Supercaps, 2023. [Google Scholar]
- LIU C, XIE X, LU B, et al. Electrolyte Strategies toward Better Zinc-Ion Batteries [J]. ACS Energy Letters, 2021, 6 (3): 1015-33. [CrossRef] [Google Scholar]
- GUO S, QIN L, ZHANG T, et al. Fundamentals and perspectives of electrolyte additives for aqueous zinc-ion batteries [J]. Energy Storage Materials, 2021, 34: 545-62. [CrossRef] [Google Scholar]
- ZHANG Y, LI H, HUANG S, et al. Rechargeable Aquous Zinc-Ion Batteries in MgSO (4)/ZnSO (4) Hybrid Electrolytes [J]. Nanomicro Lett, 2020, 12 (1): 60. [Google Scholar]
- ZHAO F, JING Z, GUO X, et al. Trace amounts of fluorinated surface additives enable high performance zinc-ion batteries [J]. Energy Storage Materials, 2022, 53: 638-45. [CrossRef] [Google Scholar]
- LI H, LIU Y, CHEN Z, et al. High voltage and healing flexible zinc ion battle based on ionogel electrolyte [J]. J Colloid Interface Sci, 2023, 639: 408-15. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.