Open Access
Issue |
MATEC Web Conf.
Volume 382, 2023
6th International Conference on Advances in Materials, Machinery, Electronics (AMME 2023)
|
|
---|---|---|
Article Number | 01012 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/matecconf/202338201012 | |
Published online | 26 June 2023 |
- Lewis, G. N. & Keyes, F. G. (1913). The potential of the lithium electrode. Journal of the American Chemical Society, 35(4), 340. [CrossRef] [Google Scholar]
- Silbernagel, B. G. & Whittinggham, M. S. (1976). An NMR study of the alkali metal intercalation phase LixTiS2:Relation to structure,thermodynamics, and ionicity. Journal of Chemical Physics, 64(9), 3670-3673. [CrossRef] [Google Scholar]
- Whittingham, M. S. (2021). Lithium titanium disulfide cathodes. Nat Energy. (6), 214. [CrossRef] [Google Scholar]
- Zhang, J. F. (2020). Development and prospect of lithium-ion batteries from the 2019 Nobel Prize in Chemistry. Chemical Engineering Design Communications, 46(3),2. [Google Scholar]
- Padhi, A. K., Goodenough, J. B., Nanjundaswamy, K. S. (1997). Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. Journal of the Electrochemical Society, (144), 1188-1194. [CrossRef] [Google Scholar]
- Zhao, L. Z. (2009). Summaries of lithium-ion battery and progress of its anode materials. Guangdong Chemical Industry, 36(5), 3. [Google Scholar]
- Dai, Y. S., Xian, Q. Y. & Huang, Z. M. (2002). Research on lithium-ion battery performance. Chinese Battery Industry, 7(5), 258-261. [Google Scholar]
- Cheng, X. Q. (2008). Chemical power source. Beijing: Chemical Industry Press. [Google Scholar]
- Xie, S. B., Hu, X. S., Zhang, Q. K. et al. (2020). Aging-aware co-optimization of battery size,depth of discharge,and energy management for plug-in hybrid electric vehicles. Power Sources, 450:227638. [CrossRef] [Google Scholar]
- Engbroks, L., Görke, D., Schmiedler, S. et al. (2019). Combined energy and thermal management for plugin hybrid electric vehicles-analyses based on optimal control theory. IFAC Papers OnLine, 52(5), 610. [CrossRef] [Google Scholar]
- Li, Z. K. (2022). Preparation and modification of spinel type LiMn2O4 cathode materials. Xuzhou: Master Dissertation of China University of Mining and Technology. doi: 10.27623/d.cnk i.gzkyu.2022.001728. [Google Scholar]
- Pei, P. C., Chen, J. Y. & Wu, Z. Y. (2019). Selfdischarge mechanism and measurement methods for lithium ion batteries. Journal of Tsinghua University (Science and Technology), 59(1), 53-65. [Google Scholar]
- Me, D. Y., Liu, Y. B. & Dai, C. S. (2019). Research progress in liquid organic electrolyte for li-ion battery. Battery Bimonthly, 49(1), 68. [Google Scholar]
- Ehteshami, N., Ibing, L., Stolz, L. et al. (2020). Ethylene carbonate-free electrolytes for Li-ion battery:Study of the solid electrolyte interphases formed on graphite anodes. Power Sources, 451: 227804. [CrossRef] [Google Scholar]
- Li, M., Qiu, J. Y. & Yu, Z. B. (2015). New use of conducting salts in electrolytes of high power Li-ion batteries. Chinese Journal of Power Sources, 39(1), 191. [Google Scholar]
- Mizushima, K., Jones, P. C., Wiseman, P. J. & Goodenough, J. B. (1980). LixCoO2(0<x<1):A new cathode material for batteries of high energy density. Mater. Res. Bull, 15(6), 783-789. [CrossRef] [Google Scholar]
- Goodenough, J. B., Mizushima, K. & Takeda, T. (1980). Solid-solution oxides for storage-battery electrodes. Jpn.J. Appl. Phys, 19: 305-313. [CrossRef] [Google Scholar]
- Shao-hao-horn, Y., Croguennec, L., Delmas, C. et al. (2003). Atomic resolution of lithium ions in LiCoO2. Nature Materials, 2(7): 464-467. [CrossRef] [Google Scholar]
- Myung, S. T., Komaba, S. & Kumagai, N. (2002). Hydrothermal synthesis and electrochemical behavior of orthorhombic LiMnO2. [Google Scholar]
- Armstrong, A. R. & Bruce, P. G. (1996). Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature, 381, 499-500. [CrossRef] [Google Scholar]
- Zhao, L. Z., Chen, Y. W. & Wang, G. R. (2010). Raman spectra study of orthorhombic LiMnO2.Solid State Ionics, 181: 1399-1402. [CrossRef] [Google Scholar]
- Zhao, H. Y., Liu, X. Q. & Zhang, Z. (2013). Research progress of LiMnO2 cathode material for lithium-ion rechargeable batteries. Electronic Components and Materials, 32(6), 1-6. [Google Scholar]
- Jolanta, D., Christian, L., Pawel, P. et al. (2014). Hooked on switch:strain-managed cooperative Jahn-Teller effect in Li0.95Mn2.05O4 spinel. Rsc Advances, 4(110), 65205-65212. [CrossRef] [Google Scholar]
- Thackeray, M. M. (1997). Manganese oxides for lithium batteries. Progress in Solid State Chemistry, 25(1-2), 1-71. [CrossRef] [Google Scholar]
- Aurbach, D. Levi, M. D., Gamulski, K., Markovsky, B., Salitra, G., Levi, E., Heider, U., Heider, L. & Oesten, R. (1999). Capacity fading of LixMn2O4spinel electrodes studied by XRD and electroanalytical techniques. J.Power, 81-82,472-479. [Google Scholar]
- Yamada, A., Tanaka, M. & Teller, J. (1995). Structural phase transition around 280K in LiMn2O4. Materials Research Bulletin, 30(6), 715-721. [CrossRef] [Google Scholar]
- Spence, S. L., Hu, A., Jiang, M. et al. (2022). Mapping lattice distortions in LiNi0.5Mn1.5O4 cathode materials. ACS Energy Letters, 7:690-695. [CrossRef] [Google Scholar]
- Zhang, Y. J., Zhu, Z. Y., Dong, P. et al. (2017). New research progress of the electrochemical reaction mechanism, preparation, and modification for LiFePO4. Acta Physico-Chemica Sinica, 33(6), 1085-1107. [CrossRef] [Google Scholar]
- Zu, Z. H. (2022). First principle study on modification of LiFePO4 cathode material for lithium-ion battery. Xi’an: Master Dissertation of Xi’an University of Architecture and Technology, doi: 10.27393/d.cnki.gxazu.2022.000295. [Google Scholar]
- Xu, G. G., Zhong, K. H., Zhang, J. M. et al. (2014). First-principles investigation of the electronic and Liion diffusion properties of LiFePO4 by sulfur surface modification. Journal of Applied Physics, 116(6): 063703. [CrossRef] [Google Scholar]
- Bao, L., Xu, G. & Wang, J. (2015). Hydrothermal synthesis of flower-like LiMnPO4 nanostructrues self-assembled with (010) nanosheets and their application in Li-ion batteries. CryEngComm, 17(33): 6399-6405. [CrossRef] [Google Scholar]
- Yamada, A., Chung, S. C. & Hinokuma, K. (2010). ChemInform abstract: Optimized LiFePO4 for lithium battery cathodes. ChemInform, 32(29):17-17. [Google Scholar]
- Luo, D. D. (2017). Preparation and modification of LiMnPO4 cathode material by solvothermal method for Li-ion battery. Tianjin: Master Dissertation of Tianjin University. [Google Scholar]
- Yamada, A., Hosoya, M., Chung, S. C. et al. (2003). Olivine-type cathodes. Power Sources, 119-121, 232-238. [CrossRef] [Google Scholar]
- Martha, S. K., Markovsky, B., Orinblat, J., Gofer, Y., Hark, O., Zinigrad, E., Aurbach, D., Drezen, T., Wang, D., Deghenghi, Q. & Exnar, I. (2009). LiMnPO4 as an advanced cathode material for rechargeable lithium batteries. Joumal of The Electrochemical Soeiety, 156(7):8559-8563. [Google Scholar]
- Liu, L. Y., Cao, Z. J., Cui, Y. et al. (2019). Nanocomposites LiMn1−xMxPO4/C synthesized via freeze drying assisted sol-gel routine and their magnetic and electrochemical properties. Journal of Alloys and Compounds, 779:339-346. [CrossRef] [Google Scholar]
- Dong, Y., Wang, L., Zhang, S. et al. (2012). Twophase interface in LiMnPO4.nanoplates. Jounal of Power Sources, 215(5):116-121. [CrossRef] [Google Scholar]
- Wang, J. F. & Zhang, W. G. (2001). Progress on organic/inorganic hybrid materials for sol-gel progress — 1. Organic/inorganic hybrid materials with chemical bond between phases. Polymer Bulletin, 1(1), 60-67. [Google Scholar]
- Li, Y., Zhen, Z., Ren, M. et al. (2006). Electrochemical performance of nanocrystalline Li3V2(PO4)3/carbon composite material synthesized by a novel sol-gel method. Electrochimica Acta, 51(28):6498-6502. [CrossRef] [Google Scholar]
- Dong, P., Xia, S. B., Zhang, Y. J. et al. (2016). Effect of complexing agent on electrochemical performance of LiNi_(080)Co_(0.15)_Al(0.05)O_2 cathode materials prepared by sol-gel method. Journal of the Chinese Ceramic Study, 44(10), 1415-1420. [Google Scholar]
- Guo, R., Shi, P. F., Cheng, X. Q. et al. (2007). Synthesis and characterization of LiNi1/3Mn1/3Co1/3O2 by high temperature solid-state method. Chinese Journal of Inorganic Chemistry, 23(8), 1387-1392. [Google Scholar]
- Cheng, B. (2012). Doped LiMn2O4 and LiMn2O4/graphene composites as high power and energy cathode materials for lithium-ion batteries. Jinan: Master Dissertation of Shandong University, 14-15. [Google Scholar]
- Li, K. (2018). Synthesis of Li2FeSiS4 material by high-temperature solid-state method. Liaoning: Master Dissertation of Northeast University. doi: 10.27007/d.cnki.gdbeu.2018.002738. [Google Scholar]
- Dong, E. H., Liu, B. G., Su, W. T. et al. (2023). Status of cathode material regeneration technology for waste lithium-ion batteries. Mining and Metallurgy, 32(1), 91-97, 114. [Google Scholar]
- Lu, N. Q., Wang, C. G., Wang, J. Q. et al. (2018). Development of ternary cathode material LiNi1/3Co1/3Mn1/3O2 and its modification for lithiumion batteries. Science & Technology in Mining and Technology, 26(6), 58-63. [Google Scholar]
- Lin, Z. C. (2020). Preparation of lithium-rich manganese-based cathode materials by oxalate coprecipitation method. Xiamen: Master Dissertation of Xiamen University. doi: 10.27424/d.cnki. gxmdu.2020.003064. [Google Scholar]
- Ren, Y. M. (2019). Preparation methods for Ni-Co-Al cathode material. Value Engineering, 38(22), 151-152. [Google Scholar]
- Wang, Z. Y., Wang, B. X., Li, C. G. (2022). Preparation of NiCo2O4 and Li2CO3 from leaching solution of cathode material of spent NCM523 battery. Mining and Metallurgical Engineering, 42(6), 157-162. [Google Scholar]
- Zhang, X. Y., Di, Y. L., Dong, Q. et al. (2022).Research progrss on preparation of Li3V2(PO4)3 cathode material for lithium-ion batteries. Inorganic Chemicals Industry, 54(3), 38-44, 08. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.