Open Access
Issue
MATEC Web Conf.
Volume 381, 2023
1st International Conference on Modern Technologies in Mechanical & Materials Engineering (MTME-2023)
Article Number 02006
Number of page(s) 8
Section Materials Engineering
DOI https://doi.org/10.1051/matecconf/202338102006
Published online 13 June 2023
  1. Krivtsun, I., V. Kvasnytskyi, and V. Korzhyk, Solid-state welding, in Welding of Metallic Materials. 2023, Elsevier. p. 149–195. [Google Scholar]
  2. Singh, V., et al., Automotive light weight multi-materials sheets joining through friction stir welding technique: An overview. Materials Today: Proceedings, 2023. [Google Scholar]
  3. Babalola, S.A., et al., Deciphering the interdependent impact of process parameters in friction stir welding-Part I: an overview of the challenges and way forward. Materials and Manufacturing Processes, 2023: p. 1–22. [Google Scholar]
  4. Tehyo, M., et al., Influence of friction stir welding parameters on metallurgical and mechanical properties of dissimilar joint between semi-solid metal 356-T6 and aluminum alloys 6061-T651. Songklanakarin Journal of Science & Technology, 2012. 34(4). [Google Scholar]
  5. Ravikumar, S., V.S. Rao, and R. Pranesh, Effect of process parameters on mechanical properties of friction stir welded dissimilar materials between AA6061-T651 and AA7075-T651 alloys. Int. J. Adv. Mech. Eng, 2014. 4(1): p. 101–114. [Google Scholar]
  6. Stevenson, R., A. Toumpis, and A. Galloway, Defect tolerance of friction stir welds in DH36 steel. Materials & Design, 2015. 87: p. 701–711. [CrossRef] [Google Scholar]
  7. Noh, S., et al., Friction stir welding of F82H steel for fusion applications. Journal of Nuclear Materials, 2016. 478: p. 1–6. [CrossRef] [Google Scholar]
  8. Ahmed, M., et al., Friction stir welding of similar and dissimilar AA7075 and AA5083. Journal of Materials Processing Technology, 2017. 242: p. 77–91. [CrossRef] [Google Scholar]
  9. Kalvala, P.R., et al., Low temperature friction stir welding of P91 steel. Defence Technology, 2016. 12(4): p. 285–289. [CrossRef] [Google Scholar]
  10. Wu, J., R. Zhang, and G. Yang, Design and experiment verification of a new heavy friction-stir-weld robot for large-scale complex surface structures. Industrial Robot: An International Journal, 2015. [Google Scholar]
  11. Shunmugasundaram, M., et al., Optimization of process parameters of friction stir welded dissimilar AA6063 and AA5052 aluminum alloys by Taguchi technique. Materials Today: Proceedings, 2020. 27: p. 871–876. [CrossRef] [Google Scholar]
  12. Koilraj, M., et al., Friction stir welding of dissimilar aluminum alloys AA2219 to AA5083–Optimization of process parameters using Taguchi technique. Materials & Design, 2012. 42: p. 1–7. [CrossRef] [Google Scholar]
  13. Hanif, M.W., et al., Evaluation of microstructure and mechanical properties of squeeze overcast Al7075− Cu composite joints. China Foundry, 2023. 20(1): p. 29–39. [CrossRef] [Google Scholar]
  14. Hanif, M.W., A. Wasim, and M. Sajid, Evaluating the Effect of Process Parameters on the Mechanical Properties of an AA7075-Cu Overcast Joint Using the Taguchi Method. Engineering Proceedings, 2022. 23(1): p. 3. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.