Open Access
Issue |
MATEC Web Conf.
Volume 380, 2023
4th International Symposium on Mechanics, Structures and Materials Science (MSMS 2023)
|
|
---|---|---|
Article Number | 01030 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/matecconf/202338001030 | |
Published online | 01 May 2023 |
- S. Gürgen, M.C. Kuşhan, W. Li, Shear thickening fluids in protective applications: A review, Progress in Polymer Science, 75 (2017) 48-72. [CrossRef] [Google Scholar]
- B. Liu, C. Du, H. Deng, Z. Fan, J. Zhang, F. Zeng, Y. Fu, X. Gong, Mechanical properties of magnetosensitive shear thickening fluid absorber and application potential in a vehicle, Composites Part A: Applied Science and Manufacturing, 154 (2022). [Google Scholar]
- Q. Zhao, J. Yuan, H. Jiang, H. Yao, B. Wen, Vibration control of a rotor system by shear thickening fluid dampers, Journal of Sound and Vibration, 494 (2021) 115883. [CrossRef] [Google Scholar]
- S. Zhang, S. Wang, Y. Wang, X. Fan, L. Ding, S. Xuan, X. Gong, Conductive shear thickening gel/polyurethane sponge: A flexible human motion detection sensor with excellent safeguarding performance, Composites Part A: Applied Science and Manufacturing, 112 (2018) 197-206. [CrossRef] [Google Scholar]
- S. Sen, N.B. Jamal M, A. Shaw, A. Deb, Numerical investigation of ballistic performance of shear thickening fluid (STF)-Kevlar composite, International Journal of Mechanical Sciences, 164 (2019). [Google Scholar]
- T.F. Santos, C.M.S. Santos, M.S. Aquino, D. Ionesi, J.I. Medeiros, Influence of silane coupling agent on shear thickening fluids (STF) for personal protection, Journal of Materials Research and Technology, 8 (2019) 4032-4039. [CrossRef] [Google Scholar]
- U. Mawkhlieng, A. Majumdar, Deconstructing the role of shear thickening fluid in enhancing the impact resistance of high-performance fabrics, Composites Part B: Engineering, 175 (2019). [Google Scholar]
- S. Cao, Q. He, H. Pang, K. Chen, W. Jiang, X. Gong, Stress relaxation in the transition from shear thinning to shear jamming in shear thickening fluid, Smart Materials and Structures, 27 (2018). [Google Scholar]
- E.K. Hadde, J. Chen, Shear and extensional rheological characterization of thickened fluid for dysphagia management, Journal of Food Engineering, 245 (2019) 18-23. [CrossRef] [Google Scholar]
- M. Liu, W. Jian, S. Wang, S. Xuan, L. Bai, M. Sang, X. Gong, Shear thickening fluid with tunable structural colors, Smart Materials and Structures, 27 (2018). [Google Scholar]
- K. Chen, Y. Wang, S. Xuan, X. Gong, A hybrid molecular dynamics study on the non-Newtonian rheological behaviors of shear thickening fluid, J Colloid Interface Sci, 497 (2017) 378-384. [CrossRef] [Google Scholar]
- J. Ge, Z. Tan, W. Li, H. Zhang, The rheological properties of shear thickening fluid reinforced with SiC nanowires, Results in Physics, 7 (2017) 3369-3372. [CrossRef] [Google Scholar]
- X. Gong, Q. Chen, M. Liu, S. Cao, S. Xuan, W. Jiang, Squeeze flow behavior of shear thickening fluid under constant volume, Smart Materials and Structures, 26 (2017). [Google Scholar]
- S. Gürgen, W. Li, M.C. Kuşhan, The rheology of shear thickening fluids with various ceramic particle additives, Materials & Design, 104 (2016) 312-319. [CrossRef] [Google Scholar]
- S. Gürgen, M.C. Kuşhan, The ballistic performance of aramid based fabrics impregnated with multiphase shear thickening fluids, Polymer Testing, 64 (2017) 296-306. [CrossRef] [Google Scholar]
- S. Gürgen, M.A. Sofuoğlu, Experimental investigation on vibration characteristics of shear thickening fluid filled CFRP tubes, Composite Structures, 226 (2019). [Google Scholar]
- A. Khodadadi, G. Liaghat, A. Taherzadeh-Fard, D. Shahgholian-Ghahfarokhi, Impact characteristics of soft composites using shear thickening fluid and natural rubber–A review of current status, Composite Structures, 271 (2021). [Google Scholar]
- E.H. Albuja, J.A. Szpunar, A.G. Odeshi, Ballistic impact response of laminated hybrid materials made of 5086-H32 aluminum alloy, epoxy and Kevlar fabrics impregnated with shear thickening fluid, Composites Part A Applied Science and Manufacturing, (2016) 54-65. [Google Scholar]
- C.D. Cwalina, R.D. Dombrowski, C.J. Mccutcheon, E.L. Christiansen, N.J. Wagner, MMOD Puncture Resistance of EVA Suits with Shear Thickening Fluid (STF) – Armortm Absorber Layers, Procedia Engineering, 103 (2015) 97-104. [CrossRef] [Google Scholar]
- F. Pinto, M. Meo, Design and Manufacturing of a Novel Shear Thickening Fluid Composite (STFC) with Enhanced out-of-Plane Properties and Damage Suppression, Applied Composite Materials, (2017). [Google Scholar]
- M. Jeddi, M. Yazdani, H. Hasan-nezhad, Energy absorption characteristics of aluminum sandwich panels with Shear Thickening Fluid (STF) filled 3D fabric cores under dynamic loading conditions, ThinWalled Structures, 168 (2021). [Google Scholar]
- Z.P. Gu, X.Q. Wu, Q.M. Li, Q.Y. Yin, C.G. Huang, Dynamic compressive behaviour of sandwich panels with lattice truss core filled by shear thickening fluid, International Journal of Impact Engineering, 143 (2020) 103616. [CrossRef] [Google Scholar]
- V.A. Lemos, M.S. Santos, E.S. Santos, M. Santos, W. Santos, A.S. Souza, D. Jesus, C. Virgens, M.S. Carvalho, N. Oleszczuk, Application of polyurethane foam as a sorbent for trace metal pre-concentration — A review, Spectrochimica Acta Part B Atomic Spectroscopy, 62 (2007) 4-12. [CrossRef] [Google Scholar]
- Q. Zhang, X. Yu, F. Scarpa, D. Barton, Y. Zhu, Z.Q. Lang, D. Zhang, A dynamic poroelastic model for auxetic polyurethane foams involving viscoelasticity and pneumatic damping effects in the linear regime, Mechanical Systems & Signal Processing, (2022) 179. [Google Scholar]
- Stirna, Beverte, Yakushin, Cabulis, Mechanical properties of rigid polyurethane foams at room and cryogenic temperatures, J CELL PLAST, (2011). [Google Scholar]
- A. Hakim, M. Nassar, A. Emam, M. Sultan, Preparation and characterization of rigid polyurethane foam prepared from sugar-cane bagasse polyol, Materials Chemistry & Physics, 129 (2011) 301-307. [CrossRef] [Google Scholar]
- F. Saint-Michel, L. Chazeau, J.Y. Cavaille, Mechanical properties of high density polyurethane foams: I. Effect of the density, Composites Science & Technology, 66 (2006) 2700-2708. [CrossRef] [Google Scholar]
- Singh, Harpal, Jain, A., K., Ignition, combustion, toxicity, and fire retardancy of polyurethane foams: A comprehensive review, Journal of Applied Polymer Science, 111 (2008) NA-NA. [Google Scholar]
- G. Subhash, Q. Liu, X.L. Gao, Quasistatic and high strain rate uniaxial compressive response of polymeric structural foams. [Google Scholar]
- E. Linul, L. Marsavina, D. Apostol, M.C. Dan, T. Sadowski, Effect of Density, Loading Rate, Material Orientation and Temperature on Dynamic Compression Behavior of Rigid PUR Foams, in: 10th International Conference on Foam Materials & Technology, 2012. [Google Scholar]
- D. Grzda, G. Wgrzyk, M. Leszczyńska, L. Szczepkowski, M. Gloc, J. Ryszkowska, Viscoelastic Polyurethane Foams for Use as Auxiliary Materials in Orthopedics, Materials, 15 (2022) 133-. [Google Scholar]
- L. Zhu, W. Liu, H. Fang, J. Chen, Y. Zhuang, J. Han, Design and simulation of innovative foam-filled Lattice Composite Bumper System for bridge protection in ship collisions, Composites Part B: Engineering, 157 (2019) 24-35. [CrossRef] [Google Scholar]
- T. Liu, L. Chen, Numerical Simulation of Vehicle Collision with Reinforced Concrete Piers Protected by FRP-Foam Composites, in: Structures Congress 2019, 2019. [Google Scholar]
- C. Shan, Analysis of collision performance of anticollision box made of steel–polyurethane sandwich plates, Journal of Constructional Steel Research, 175 (2020) 106357. [CrossRef] [Google Scholar]
- Y. Zhang, X. Liu, Y. Zhou, Y. Shi, Uniaxial compressive performance of an aramid and aluminum honeycomb sandwich structure, Ocean Engineering, 270 (2023) 113676. [CrossRef] [Google Scholar]
- N. Khaire, G. Tiwari, V. Patel, M.A. Iqbal, Assessment of the ballistic response of honeycomb sandwich structures subjected to offset and normal impact, Defence Technology, (2023). [Google Scholar]
- Y. Duan, Z. Cui, X. Xie, Y. Tie, T. Zou, T. Wang, Mechanical characteristics of composite honeycomb sandwich structures under oblique impact, Theoretical and Applied Mechanics Letters, 12 (2022) 100379. [CrossRef] [Google Scholar]
- S. Rathod, N. Khaire, G. Tiwari, A comparative study on the ballistic performance of aramid and aluminum honeycomb sandwich structures, Composite Structures, 299 (2022) 116048. [CrossRef] [Google Scholar]
- S. Huang, Y. Liu, K. Wen, X. Su, C. Liang, H. Duan, G. Zhao, Optimization design of a novel microwave absorbing honeycomb sandwich structure filled with magnetic shear-stiffening gel, Composites Science and Technology, 232 (2023) 109883. [CrossRef] [Google Scholar]
- H. Lv, S. Shi, B. Chen, J. Ma, Z. Sun, Low-velocity impact response of composite sandwich structure with grid–honeycomb hybrid core, International Journal of Mechanical Sciences, 246 (2023) 108149. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.