Open Access
Issue
MATEC Web Conf.
Volume 380, 2023
4th International Symposium on Mechanics, Structures and Materials Science (MSMS 2023)
Article Number 01023
Number of page(s) 7
DOI https://doi.org/10.1051/matecconf/202338001023
Published online 01 May 2023
  1. Z. Li, H. H. T. Liu, B. Zhu, H. Gao, and O. Kaynak, “Nonlinear robust attitude tracking control of a tablemount experimental helicopter using output feedback, ” IEEE Transactions on Industrial Electronics, vol. 62, no. 9, pp. 5665–5676, 2015. [CrossRef] [Google Scholar]
  2. H. Peng and X. Zhu, Robust Attitude Control of a 3DOF Helicopter considering Communication Delays, 2020 39th Chinese Control Conference (CCC), Shenyang, China, 2020, pp. 6780-6785, doi: 10.23919/CCC50068.2020.9188777. [Google Scholar]
  3. W. Xu, H. C. Peng, Y. Liu, X. Y. Zhu, Robust attitude control of a 3-DOF helicopter prototype subject to wind disturbance and communication delay, Transactions of the Institute of Measurement and Control, vol. 43, no. 13, pp. 3071-3081 [Google Scholar]
  4. J. Wang, J. Wang and X. Wang, “Model Free Adaptive Sliding Mode Fault Tolerant Control for a 3-DOF Helicopter, ” 2022 IEEE International Conference on Unmanned Systems (ICUS), Guangzhou, China, 2022, pp. 1345-1349, doi: 10.1109/ICUS55513.2022.9986865. [Google Scholar]
  5. X. Zhu, D. Li, Robust fault estimation for a 3-DOF helicopter considering actuator saturation, Mechanical Systems and Signal Processing, vol 155, no.12, p 86-102, 16 June 2021 [Google Scholar]
  6. L. Liu, Y. Su and J. Lu, “Attitude Tracking Control of 3-DOF Helicopter Based on Command Filter and Neural Network Techniques, ” 2021 IEEE 10th Data Driven Control and Learning Systems Conference (DDCLS), Suzhou, China, 2021, pp. 613-618, doi: 10.1109/DDCLS52934.2021.9455661. [Google Scholar]
  7. X. D. Wang, Prescribed Performance Adaptive Fixed-Time Attitude Tracking Control of a 3-DOF Helicopter with Small Overshoot, arXiv, January 23, 2022, doi: 10.48550/arXiv.2201.09180 [Google Scholar]
  8. Besada-Portas, E.; Lopez-Orozco, J.A.; Aranda, J.; De La Cruz, J.M, Virtual and remote practices for learning control topics with a 3dof quadrotor, IFAC Proceedings Volumes (IFAC-PapersOnline), vol 10, PART 1, p78-83, 2013, 10th IFAC Symposium on Advances in Control Education, ACE 2013Proceedings [Google Scholar]
  9. Helio S. Esteban Villega, Carlos Borras Pinilla, and Laura Milena Prieto. 2021. Predictive Control of 3 DOF Helicopter Using a Kalman and Neural Network Estimator. In 2021 International Symposium on Electrical, Electronics and Information Engineering (ISEEIE 2021). Association for Computing Machinery, New York, NY, USA, 122–127. doi:10.1145/3459104.3459126 [Google Scholar]
  10. G. Rigatos, P. Wira, M. A. Hamida, M. Abbaszadeh and J. Pomares, “Nonlinear optimal control for the 3DOF laboratory helicopter, “ 2020 IEEE 29th International Symposium on Industrial Electronics (ISIE), Delft, Netherlands, 2020, pp. 555-560, doi: 10.1109/ISIE45063.2020.9152254. [Google Scholar]
  11. M. Pal, F. Plestan and A. Chriette, “Discrete-time second-order-sliding-mode observer for state and unknown input estimation: Application to a 3DOF helicopter, “ 2015 European Control Conference (ECC), Linz, Austria, 2015, pp. 2914-2919, doi: 10.1109/ECC.2015.7330980. [Google Scholar]
  12. Alvarez-Munoz, J.; Marchand, N.; GuerreroCastellanos, J.F.; Tellez-Guzman, J.J.; Escareno, J.; Rakotondrabe, M., Rotorcraft with a 3DOF Rigid Manipulator: Quaternion-based Modeling and Realtime Control Tolerant to Multi-body Couplings, International Journal of Automation and Computing, vol 15, no 5, p 547-58, Oct. 2018 [CrossRef] [Google Scholar]
  13. J. Q. Pan, T. Shen, T. Rong, Robust Guarantee Control for 3DOF Helicopters Based on MultipleModel Switching, Proceedings-9th International Conference on Intelligent Human-Machine Systems and Cybernetics, IHMSC 2017, vol 1, p 430-435, September 20, 2017 [Google Scholar]
  14. Khizer, A.N., Y. P. Dai, Ali, S.A., X. Y. Xu, 3DoF Model Helicopter with Hybrid Control, IAES TELKOMNIKA Indonesian Journal of Electrical Engineering, vol. 12, no.5, p 3863-72, May 2014 [Google Scholar]
  15. S. M. Ra’afat, S. S. Ali and R. Akmeliawati, “Realtime optimization and control of 3DOF helicopter system via extremum seeking algorithm, “ 2015 10th Asian Control Conference (ASCC), Kota Kinabalu, Malaysia, 2015, pp. 1-6, doi: 10.1109/ASCC.2015.7244822. [Google Scholar]
  16. R. Mei, Q. L. Cui, Backstepping control for a 3DOF model helicopter with input and output constraints, International Journal of Advanced Robotic Systems, vol. 14, no.1, February 1, 2016 [Google Scholar]
  17. C. Yu, S. Liang, Model predictive control for a 3DOF laboratory helicopter based on disturbance prediction, ICIC Express Letters, Part B: Applications, vol. 8, no.2, p 429-36, Feb. 2017 [Google Scholar]
  18. Ferreira, A. S. R. Caregnato-neto, A., R.K.H.; Afonso, R.J.M., Dynamic Matrix Control of a 3DOF Helicopter with Stabilising Inner Loop, CONTROLO 2022: Proceedings of the 15th APCA International Conference on Automatic Control and Soft Computing. Lecture Notes in Electrical Engineering (930), p 227-38, 2022 doi: 10.1007/978-3-03110047-5_20 [Google Scholar]
  19. H. Castaneda, F. Plestan, A. Chriette, J. de LeonMorales, Continuous differentiator based on adaptive second-order sliding-mode control for a 3-DOF helicopter, IEEE Trans. Ind. Electron. Vol. 63, no.9, p 5786–5793, 2016. [CrossRef] [Google Scholar]
  20. X. Yang, X. Zheng, Adaptive NN backstepping control design for a 3-DOF helicopter: theory and experiments, IEEE Trans. Ind. Electron. Vol. 67, no.5, p3967–3979, 2020. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.