Open Access
Issue
MATEC Web Conf.
Volume 379, 2023
18e Congrès de la Société Française de Génie des Procédés (SFGP2022)
Article Number 05002
Number of page(s) 9
Section Transformation des agro et bio ressources / Processing of Agro and Bio Resources
DOI https://doi.org/10.1051/matecconf/202337905002
Published online 12 May 2023
  1. ADEME en Guadeloupe. Algues Sargasses. Disponible en ligne : https://guadeloupe.ademe.fr/expertises/algues-sargasses (consulté le 1 juillet 2022). [Google Scholar]
  2. Baghel, R.S.; Suthar, P.; Gajaria, T.K.; Bhattacharya, S.; Anil, A.; Reddy, C.R.K., Seaweed biorefinery: A sustainable process for valorising the biomass of brown seaweed, Journal of Cleaner Production, 2020, 263, 121-359. [Google Scholar]
  3. Bird, K.T.; Hanisak, M.D.; Ryther, J.H., Changes in agar and other chemical constituents of the seaweed gracilaria tikvahiae when used as a substrate in methane digesters, Resources and Conservation, 1981, 6(3), 321–327. [CrossRef] [Google Scholar]
  4. Chamaa, M.A., Couplage de la méthanisation et des électrotechnologies : intensification de la production de biogaz et du séchage du digestat, thèse de doctorat en génie des procédés et bioprocédés, Université Bretagne Sud, 2017, 234 p. [Google Scholar]
  5. Costa, J.C.; Oliveira J.V.; Pereira, M.A.; Alves, M.M.; Abreu, A.A., Biohythane production from marine macroalgae Sargassum sp. coupling dark fermentation and anaerobic digestion, Bioresource Technology, 2015, 190, 251–256. [CrossRef] [Google Scholar]
  6. Costa, J.C.; Gonçalves, P.R.; Nobre, A.; Alves, M.M., Biomethanation potential of macroalgae Ulva spp. and Gracilaria spp. and in co-digestion with waste activated sludge, Bioresource Technology, 2012, 114, 320–326. [CrossRef] [Google Scholar]
  7. Chynoweth, D.P.; Turick, C.E.; Owens, J.M.; Jerger, D.E.; Peck, M.W., Biochemical methane potential of biomass and waste feedstocks, Biomass and Bioenergy, 1993, 5(1), 95–111. [CrossRef] [Google Scholar]
  8. Goupy, J.; Creighton, L., Introduction aux plans d’expériences; Technique et ingénierie; 3e éd.; Dunod “L’Usine nouvelle”: Paris, 2006; ISBN 978-2-10-049744-7. [Google Scholar]
  9. Holliger, C. et al., Towards a standardization of biomethane potential tests, Water Science and Technology, 2016, 74(11), 2515–2522. [CrossRef] [Google Scholar]
  10. Liu, X.; Boy, V.; Lendormi, T.; Lemée, Y.; Lanoisellé, J.L., Valorization of Common Starfish (Asterias rubens) by Air Impingement Drying and Mesophilic Anaerobic Digestion: A Preliminary Study, Waste and Biomass Valorization, 2021, 12(6), 2969–2981. [CrossRef] [Google Scholar]
  11. Lo H.M. et al., Modeling biogas production from organic fraction of MSW co-digested with MSWI ashes in anaerobic bioreactors. Bioresource Technology, 2010, 101, 6329–6335. [CrossRef] [Google Scholar]
  12. Raposo, F.; Borja, R.; Rincon, B., Jimenez, A.M., Assessment of process control parameters in the biochemical methane potential of sunflower oil cake, Biomass and Bioenergy, 2008, 32(12), 1235–1244. [CrossRef] [Google Scholar]
  13. Zeng S.; Yuan X.; Shi X.; Qiu Y., Effect of inoculum/substrate ratio on methane yield and orthophosphate release from anaerobic digestion of Microcystis spp., Journal of Hazardous Materials, 2010, 178, 89-93. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.