Open Access
Issue
MATEC Web Conf.
Volume 379, 2023
18e Congrès de la Société Française de Génie des Procédés (SFGP2022)
Article Number 05001
Number of page(s) 8
Section Transformation des agro et bio ressources / Processing of Agro and Bio Resources
DOI https://doi.org/10.1051/matecconf/202337905001
Published online 12 May 2023
  1. Bastard, A. (2015). Interactions microorganismes Bois et impact sur les propriétés physico-chimiques du vin : Fermentation malolactique par le biofilm de Oenococcus oeni. Thèse de l’Université de Bourgogne. [Google Scholar]
  2. Bastard, A., Coelho, C., Briandet, R., Canette, A., Gougeon, R., Alexandre, H., Guzzo, J., & Weidmann, S. (2016). Effect of Biofilm Formation by Oenococcus oeni on Malolactic Fermentation and the Release of Aromatic Compounds in Wine. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.00613 [CrossRef] [Google Scholar]
  3. Brückner, S., & Mösch, H.-U. (2012). Choosing the right lifestyle : Adhesion and development in Saccharomyces cerevisiae. FEMS Microbiology Reviews, 36(1), 25-58. https://doi.org/10.1111/j.15746976.2011.00275.x [CrossRef] [Google Scholar]
  4. Cheng, K.-C., Demirci, A., & Catchmark, J. M. (2010). Advances in biofilm reactors for production of value-added products. Applied Microbiology and Biotechnology, 87(2), 445-456. https://doi.org/10.1007/s00253-010-2622-3 [CrossRef] [Google Scholar]
  5. Demirci, A., Pometto III, A. L., & Ho, K.-L. G. (1997). Ethanol production by Saccharomyces cerevisiae in biofilm reactors. Journal of Industrial Microbiology and Biotechnology, 19(4), 299-304. https://doi.org/10.1038/sj.jim.2900464 [CrossRef] [Google Scholar]
  6. Eze, E. C., & El Zowalaty, M. E. (2019). Combined Effects Of Low Incubation Temperature, Minimal Growth Medium, And Low Hydrodynamics Optimize Acinetobacter baumannii Biofilm Formation. Infection and Drug Resistance, 12, 3523-3536. https://doi.org/10.2147/IDR.S203919 [CrossRef] [Google Scholar]
  7. Genisheva Z. et al., (2014a). Immobilized cell systems for batch and continuous winemaking. Trends in Food Science & Technology, 40(1), 33-47. https://doi.org/10.1016/j.tifs.2014.07.009 [CrossRef] [Google Scholar]
  8. Genisheva, Z., Mota, A., Mussatto, S. I., Oliveira, J. M., & Teixeira, J. A. (2014b). Integrated continuous winemaking process involving sequential alcoholic and malolactic fermentations with immobilized cells. Process Biochemistry, 49(1), 1-9. https://doi.org/10.1016/j.procbio.2013.10.005 [CrossRef] [Google Scholar]
  9. Gosset, M. (2022). Mise en œuvre de microorganismes immobilisés pour un procédé innovant de vinification en continu. Thèse de l’Université de Toulouse [Google Scholar]
  10. Khalilzadeh, P. (2009). Formation de Biofilm à Pseudomonas aeruginosa : Évaluation d’inhibiteurs potentiels du Quorum Sensing. Thèse de l’Université de Toulouse III [Google Scholar]
  11. Kourkoutas, Y., Bekatorou, A., Banat, I. M., Marchant, R., & Koutinas, A. A. (2004). Immobilization technologies and support materials suitable in alcohol beverages production : A review. Food Microbiology, 21(4), 377-397. https://doi.org/10.1016/j.fm.2003.10.005 [CrossRef] [Google Scholar]
  12. Kourkoutas, Y., Douma, M., Koutinas, A. A., Kanellaki, M., Banat, I. M., & Marchant, R. (2003). Continuous winemaking fermentation using quince-immobilized yeast at room and low temperatures. Process Biochemistry, 39(2), 143-148. https://doi.org/10.1016/S0032-9592(02)00320-5 [CrossRef] [Google Scholar]
  13. Kunduru, M. R., & Pometto, A. (1996). Continuous ethanol production by Zymomonas mobilis and Saccharomyces cerevisiae in biofilm reactors. Journal of Industrial Microbiology, 16(4), 249-256. https://doi.org/10.1007/BF01570029 [CrossRef] [Google Scholar]
  14. Moreno-García, J., García-Martínez, T., Mauricio, J. C., & Moreno, J. (2018). Yeast Immobilization Systems for Alcoholic Wine Fermentations : Actual Trends and Future Perspectives. Frontiers in Microbiology, 9, 241. https://doi.org/10.3389/fmicb.2018.00241 [CrossRef] [Google Scholar]
  15. Petrova, O. E., & Sauer, K. (2012). Sticky Situations : Key Components That Control Bacterial Surface Attachment. Journal of Bacteriology, 194(10), 2413-2425. https://doi.org/10.1128/JB.00003-12 [CrossRef] [Google Scholar]
  16. Ribéreau-Gayon, P., Dubourdieu, D., Bernard Donèche, & Aline Lonvaud. (2020). Traité d’oenologie—Tome 1—Microbiologie du vin. Vinifications— 7è édition. Dunod. [Google Scholar]
  17. Sipsas, V., Kolokythas, G., Kourkoutas, Y., Plessas, S., Nedovic, V. A., & Kanellaki, M. (2009). Comparative study of batch and continuous multi-stage fixed-bed tower (MFBT) bioreactor during wine-making using freeze-dried immobilized cells. Journal of Food Engineering, 90(4), 495-503. https://doi.org/10.1016/j.jfoodeng.2008.07.016 [CrossRef] [Google Scholar]
  18. Vert, M., Doi, Y., Hellwich, K.-H., Hess, M., Hodge, P., Kubisa, P., Rinaudo, M., & Schué, F. (2012). Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure and Applied Chemistry, 84(2), 377-410. https://doi.org/10.1351/PAC-REC-10-12-04 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.