Open Access
Issue |
MATEC Web Conf.
Volume 379, 2023
18e Congrès de la Société Française de Génie des Procédés (SFGP2022)
|
|
---|---|---|
Article Number | 01009 | |
Number of page(s) | 8 | |
Section | Développements méthodologiques pour le Génie des Procédés / Methodologies for Chemical Engineering | |
DOI | https://doi.org/10.1051/matecconf/202337901009 | |
Published online | 12 May 2023 |
- Adler, J., Enig, J.W., 1964. The critical conditions in thermal explosion theory with reactant consumption. Combustion and Flame 8, 97–103. [CrossRef] [Google Scholar]
- Bosch, J., Kerr, D.C., Snee, T.J., Strozzi, F., Zaldívar, J.M., 2004a. Runaway Detection in a Pilot-Plant Facility. Ind. Eng. Chem. Res. 43, 7019–7024. [CrossRef] [Google Scholar]
- Bosch, J., Strozzi, F., Snee, T.J., Hare, J.A., Zaldívar, J.M., 2004b. A comparative analysis between temperature and pressure measurements for early detection of runaway initiation. Journal of Loss Prevention in the Process Industries 17, 389–395. [CrossRef] [Google Scholar]
- Dakkoune, A., Vernières-Hassimi, L., Lefebvre, D., Estel, L., 2020. Early detection and diagnosis of thermal runaway reactions using model-based approaches in batch reactors. Computers & Chemical Engineering 140, 106908. [CrossRef] [Google Scholar]
- Dakkoune, A., Vernières-Hassimi, L., Leveneur, S., Lefebvre, D., Estel, L., 2019. Analysis of thermal runaway events in French chemical industry. Journal of Loss Prevention in the Process Industries 62, 103938. [CrossRef] [Google Scholar]
- Dakkoune, A., Vernières-Hassimi, L., Leveneur, S., Lefebvre, D., Estel, L., 2018. Risk analysis of French chemical industry. Safety Science 105, 77–85. [CrossRef] [Google Scholar]
- Guo, Z.-C., Bai, W.-S., Chen, Y.-J., Wang, R., Hao, L., Wei, H.-Y., 2016. An adiabatic criterion for runaway detection in semibatch reactors. Chemical Engineering Journal 288, 50–58. [CrossRef] [Google Scholar]
- Hub, L., Jones, J.D., 1986. Early on-line detection of exothermic reactions. Plant/Operations Progress 5, 221–224. [CrossRef] [Google Scholar]
- Kummer, A., Varga, T., 2021. What do we know already about reactor runaway? – A review. Process Safety and Environmental Protection 147, 460–476. [CrossRef] [Google Scholar]
- Kummer, A., Varga, T., 2019. Completion of thermal runaway criteria: Two new criteria to define runaway limits. Chemical Engineering Science 196, 277–290. [CrossRef] [Google Scholar]
- Lin, K.F., Wu, L.L., 1981. Performance of an adiabatic controlled cycled stirred tank reactor. Chemical Engineering Science 36, 435–444. [CrossRef] [Google Scholar]
- Steensma, M., Westerterp, K.R., 1991. Thermally safe operation of a semibatch reactor for liquid-liquid reactions-fast reactions. Chem. Eng. Technol. 14, 367–375. [CrossRef] [Google Scholar]
- Steensma, M., Westerterp, K.R., 1990. Thermally safe operation of a semibatch reactor for liquid-liquid reactions. Slow reactions. Ind. Eng. Chem. Res. 29, 1259–1270. [CrossRef] [Google Scholar]
- Strozzi, F., Zaldívar, J.M., Kronberg, A.E., Westerterp, K.R., 1999. On-Line runaway detection in batch reactors using chaos theory techniques. AIChE J. 45, 2429–2443. [CrossRef] [Google Scholar]
- Thomas, P., 1961. Effect of reactant consumption on the induction period and critical condition for a thermal explosion. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 262, 192–206. [Google Scholar]
- Vernières-Hassimi, L., Dakkoune, A., Abdelouahed, L., Estel, L., Leveneur, S., 2017. Zero-Order Versus Intrinsic Kinetics for the Determination of the Time to Maximum Rate under Adiabatic Conditions (TMR ad ): Application to the Decomposition of Hydrogen Peroxide. Ind. Eng. Chem. Res. 56, 13040–13049. [CrossRef] [Google Scholar]
- Westerterp, K.R., Lewak, M., Molga, E.J., 2014. Boundary Diagrams Safety Criterion for Liquid Phase Homogeneous Semibatch Reactors. Ind. Eng. Chem. Res. 53, 5778–5791. [CrossRef] [Google Scholar]
- Westerterp, K.R., Molga, E.J., 2006. Safety and Runaway Prevention in Batch and Semibatch Reactors—A Review. Chemical Engineering Research and Design, In Honour of Professor Ryszard Pohorecki on the Occasion of his 70th Birthday 84, 543–552. [Google Scholar]
- Westerterp, K.R., Molga, E.J., 2004. No More Runaways in Fine Chemical Reactors. Ind. Eng. Chem. Res. 43, 4585–4594. [CrossRef] [Google Scholar]
- Zaldívar, J.M., Cano, J., Alós, M.A., Sempere, J., Nomen, R., Lister, D., Maschio, G., Obertopp, T., Gilles, E.D., Bosch, J., Strozzi, F., 2003. A general criterion to define runaway limits in chemical reactors. Journal of Loss Prevention in the Process Industries 16, 187–200. [CrossRef] [Google Scholar]
- Zheng, J.L., Wärnå, J., Salmi, T., Burel, F., Taouk, B., Leveneur, S., 2016. Kinetic modeling strategy for an exothermic multiphase reactor system: Application to vegetable oils epoxidation using Prileschajew method. AIChE J. 62, 726–741. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.