Open Access
Issue
MATEC Web Conf.
Volume 379, 2023
18e Congrès de la Société Française de Génie des Procédés (SFGP2022)
Article Number 01008
Number of page(s) 9
Section Développements méthodologiques pour le Génie des Procédés / Methodologies for Chemical Engineering
DOI https://doi.org/10.1051/matecconf/202337901008
Published online 12 May 2023
  1. Akbari, B., Tavandashti, M. P., & Zandrahimi, M. (2011). Particle size characterization of nanoparticles–a practical approach. Iranian Journal of Materials Science and Engineering, 8(2), 48-56. [Google Scholar]
  2. Babick, F., Mielke, J., Wohlleben, W., Weigel, S., & Hodoroaba, V.-D. (2016). How reliably can a material be classified as a nanomaterial? Available particle-sizing techniques at work. Journal of Nanoparticle Research, 18(6), 158. [CrossRef] [Google Scholar]
  3. Bau, S., Dazon, C., Rastoix, O., & Bardin-Monnier, N. (2021). Effect of constituent particle polydispersion on VSSA-based equivalent particle diameter: Theoretical rationale and application to a set of eight powders with constituent particle median diameters ranging from 9 to 130 nm. Advanced Powder Technology, 32(5), 1369-1379. [CrossRef] [Google Scholar]
  4. Bau, S., Rousset, D., Payet, R., & Keller, F.-X. (2020). Characterizing particle emissions from a direct energy deposition additive manufacturing process and associated occupational exposure to airborne particles. Journal of Occupational and Environmental Hygiene, 17(2-3), 59-72. [CrossRef] [Google Scholar]
  5. Bau, S., Witschger, O., Gensdarmes, F., Rastoix, O., & Thomas, D. (2010). A TEM-based method as an alternative to the BET method for measuring off-line the specific surface-area of nanoaerosols. Powder Technology, 200, 190-201. [CrossRef] [Google Scholar]
  6. Broday, D. M., & Rosenzweig, R. (2011). Deposition of fractal-like soot aggregates in the human respiratory tract. J. Aerosol Sci., 42, 372-286. [CrossRef] [Google Scholar]
  7. Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American chemical society, 60(2), 309-319. [CrossRef] [Google Scholar]
  8. Dazon, C., Bau, S., & Witschger, O. (2019d). Identification des nanomatériaux manufacturés sous forme de poudre : vers une démarche de caractérisation opérationnelle. Hygiène et Sécurité du Travail, 256, 35-40. [Google Scholar]
  9. Dazon, C., Fierro, V., Celzard, A., & Witschger, O. (2020). Identification of nanomaterials by the volume specific surface area (VSSA) criterion: application to powder mixes. Nanoscale Advances, 2(10), 4908-4917. [CrossRef] [Google Scholar]
  10. Dazon, C., Maxit, B., & Witschger, O. (2019c). Comparison between a low-voltage benchtop electron microscope and conventional TEM for number size distribution of nearly spherical shape constituent particles of nanomaterial powders and colloids. Micron, 116, 124-129. [CrossRef] [Google Scholar]
  11. Dazon, C., Witschger, O., Bau, S., Fierro, V., & Llewellyn, P. L. (2019a). Nanomaterial identification of powders: comparing volume specific surface area, X-ray diffraction and scanning electron microscopy methods. Environmental Science: Nano, 6(1), 152-162. [CrossRef] [Google Scholar]
  12. Dazon, C., Witschger, O., Bau, S., Fierro, V., & Llewellyn, P. L. (2019b). Toward an operational methodology to identify industrial-scaled nanomaterial powders with the volume specific surface area criterion. Nanoscale Advances, 1(8), 3232-3242. [CrossRef] [Google Scholar]
  13. De Temmerman, P.-J., Verleysen, E., Lammertyn, J., & Mast, J. (2014). Semi-automatic size measurement of primary particles in aggregated nanomaterials by transmission electron microscopy. Powder Technology, 261, 191-200. [CrossRef] [Google Scholar]
  14. European Commission. (2011). Commission recommendation of 18 October 2011 on the definition of nanomaterial. Off. J. Eur. Union, 275, 38. [Google Scholar]
  15. Favre, G., Feltin, N., & Bau, S. (2020). Mesure de la taille de nanoparticules : retour sur une comparaison inter-laboratoires et inter-techniques. Hygiène et Sécurité du Travail, 260, 60-67. [Google Scholar]
  16. Gaillard, C., Mech, A., Wohlleben, W., Babick, F., Hodoroaba, V.-D., Ghanem, A., Weigel, S., & Rauscher, H. (2019). A technique-driven materials categorisation scheme to support regulatory identification of nanomaterials. Nanoscale Advances, 1(2), 781-791. [CrossRef] [Google Scholar]
  17. Hackley, V. A., & Stefaniak, A. B. (2013). “Real-world” precision, bias, and between-laboratory variation for surface area measurement of a titanium dioxide nanomaterial in powder form. Journal of Nanoparticle Research, 15(6), 1742. doi: 10.1007/s11051-013-1742-y [CrossRef] [Google Scholar]
  18. Hinds, W. C. (1999). Aerosol Technol. : Properties, Behavior, and Measurement of Airborne Particles. John Wiley & Sons. [Google Scholar]
  19. ICRP. (1994). Publication 66: Human respiratory tract model for radiological protection, Oxford: Pergamon. [Google Scholar]
  20. Kreyling, W. G., Semmler-Behnke, M., & Chaudhry, Q. (2010). A complementary definition of nanomaterials. Nano Today, 5, 165-168. [CrossRef] [Google Scholar]
  21. Lecloux, A. J. (2015). Discussion about the use of the volume-specific surface area (VSSA) as criteria to identify nanomaterials according to the EU definition. Journal of Nanoparticle Research, 17(11), 447. [CrossRef] [Google Scholar]
  22. Lecloux, A. J., Atluri, R., Kolen’ko, Y. V., & Deepak, F. L. (2017). Discussion about the use of the volume specific surface area (VSSA) as a criterion to identify nanomaterials according to the EU definition. Part two: experimental approach. Nanoscale, 9(39), 14952-14966. [CrossRef] [Google Scholar]
  23. Matera, V., Rousset, D., Bau, S., & Bémer, D. (2019). Emissions, distributions et analyses chimiques de particules ultrafines issues de divers procédés industriels. Hygiène et Sécurité du Travail, 256, 54-61. [Google Scholar]
  24. Mavrocordatos, D., Perret, D., & Leppard, G. G. (2007). Strategies and advances in the characterisation of environmental colloids by electron microscopy. IUPAC SERIES ON ANALYTICAL AND PHYSICAL CHEMISTRY OF ENVIRONMENTAL SYSTEMS, 10, 345. [Google Scholar]
  25. Mech, A., Wohlleben, W., Ghanem, A., Hodoroaba, V. D., Weigel, S., Babick, F., Brüngel, R., Friedrich, C.M., Rasmussen, K., & Rauscher, H. (2020). Nano or Not Nano? A Structured Approach for Identifying Nanomaterials According to the European Commission’s Definition. Small, 16(36), 2002228. [CrossRef] [Google Scholar]
  26. Ministère de la Transition Ecologique et Solidaire. (2019). Eléments issus des déclarations des substances à l’état nanoparticulaire, Rapport d’étude 2018. 320 p. [Google Scholar]
  27. Motzkus, C., Macé, T., Gaie-Levrel, F., Ducourtieux, S., Delvallee, A., Dirscherl, K., Hodoroaba, V.-D., Popov, O., Kuselman, I., Takahata, K., Ehara, K., Ausset, P., Maillé, M., Michielsen, N., Bondiguel, S., Gensdarmes, F., Morawska, L., Johnson, G.R., Faghihi, E.M., Kim, C.S., Kim, Y.H., Chu, M.C., Guardado, J.A., Salas, A., Capannelli, G., Costa, C., Bostrom, T., Jämsting, A.K., Lawn, M.A., Adlem, L. & Vaslin-Reimann, S. (2013). Size characterization of airborne SiO2 nanoparticles with on-line and off-line measurement techniques: an interlaboratory comparison study. [journal article]. Journal of Nanoparticle Research, 15(10), 1919. [CrossRef] [Google Scholar]
  28. Powers, K. W., Palazuelos, M., Moudgil, B. M., & Roberts, S. M. (2007). Characterization of the size, shape, and state of dispersion of nanoparticles for toxicological studies. Nanotoxicology, 1(1), 42-51. [CrossRef] [Google Scholar]
  29. Rauscher, H., Mech, A., Gibson, N., Gilliland, D., Held, A., Kestens, V., Koeber, R., Lisinger, T., & Stefaniak, E. (2019). Identification of nanomaterials through measurements. Publications Office of the European Union, doi: 10.2760/053982. [Google Scholar]
  30. Roebuck, B., & Mingard, K. (2009). WC powder characterisation: Technique intercomparison. NPL REPORT MAT 32, ISSN 17542987. [Google Scholar]
  31. Rouquerol, J., Rouquerol, F., Llewellyn, P., Maurin, G., & Sing, K. S. (2013). Adsorption by powders and porous solids: principles, methodology and applications: Academic press. [Google Scholar]
  32. SCENIHR. (2010). Scientific Basis for the Definition of the Term “nanomaterial” http://ec.europa.eu/health/scientific_committees/emerging/docs/scenihr_o_032.pdf. [Google Scholar]
  33. Tamari, S. (2004). Optimum design of the constant-volume gas pycnometer for determining the volume of solid particles. Measurement Science and Technology, 15(3), 549. [CrossRef] [Google Scholar]
  34. Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9-10), 1051-1069. [CrossRef] [Google Scholar]
  35. Verleysen, E., De Temmerman, P.-J., Van Doren, E., Francisco, M. A. D., & Mast, J. (2014). Quantitative characterization of aggregated and agglomerated titanium dioxide nanomaterials by transmission electron microscopy. Powder technology, 258, 180-188. [CrossRef] [Google Scholar]
  36. Viana, M., Jouannin, P., Pontier, C., & Chulia, D. (2002). About pycnometric density measurements. Talanta, 57(3), 583-593. [CrossRef] [Google Scholar]
  37. Wang, J., Asbach, C., Fissan, H., Hülser, T., Kuhlbusch, T. A. J., Thompson, D., & Pui, D. Y. H. (2011). How can nanobiotechnology oversight science and industry: examples from environmental, health, and safety studies of nanoparticles (nano-EHS). Journal of Nanoparticle Research, 13, 1373-1387. [CrossRef] [Google Scholar]
  38. Wohlleben, W., Mielke, J., Bianchin, A., Ghanem, A., Freiberger, H., Rauscher, H., Gemeinert, M., & Hodoroaba, V.-D. (2017). Reliable nanomaterial classification of powders using the volume-specific surface area method. Journal of Nanoparticle Research, 19(2), 61. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.