Open Access
Issue
MATEC Web Conf.
Volume 377, 2023
Curtin Global Campus Higher Degree by Research Colloquium (CGCHDRC 2022)
Article Number 01014
Number of page(s) 9
Section Engineering and Technologies for Sustainable Development
DOI https://doi.org/10.1051/matecconf/202337701014
Published online 17 April 2023
  1. FAO. (2020). The State of World Fisheries and Aquaculture 2020. Rome: Retrieved from ftp://ftp.fao.org/docrep/fao/011/i0250e/i0250e.pdf. [Google Scholar]
  2. Glencross, B.D., M. Booth, and G.L. Allan, A feed is only as good as its ingredients - a review of ingredient evaluation strategies for aquaculture feeds. Aquaculture Nutrition, 2007. 13(1): p. 17–34. DOI: https://doi.org/10.1111/j.1365-2095.2007.00450.x. [CrossRef] [Google Scholar]
  3. Obaldo, L.G., S. Divakaran, and A.G. Tacon, Methodfor determining the physical stability of shrimp feeds in water. Aquaculture Research, 2002. 33(5): p. 369–377. DOI: https://doi.org/10.1046/j.1365-2109.2002.00681.x. [CrossRef] [Google Scholar]
  4. Ighwela, K.A., A.B. Ahmad, and A.A.B. Abol-Munaf, Water Stability and Nutrient Leaching of Different Levels ofMaltose Formulated Fish Pellets. Global Veterinaria, 2013. 10: p. 638–642. DOI: https://doi.org/10.5829/idosi.gv.2013.10.6.7278. [Google Scholar]
  5. Ruscoe, I.M., et al., The effects of various binders and moisture content on pellet stability of research diet for freshwater crayfish. Aquaculture Nutrition, 2005. 11: p. 87–93. DOI: https://doi.org/10.1111/j.1365-2095.2004.00324.x. [CrossRef] [Google Scholar]
  6. Tacon, A.G.J. and M. Metian, Global overview on the use offish meal and fish oil in industrially compounded aquafeeds: Trends and future prospects. Aquaculture, 2008. 285(1-4): p. 146–158. DOI: http://dx.doi.org/10.1016/j.aquaculture.2008.08.015. [CrossRef] [Google Scholar]
  7. Henry, M., et al., Review on the use of insects in the diet of farmed fish: Past and future. Animal Feed Science and Technology, 2015. 203: p. 1–22. DOI: https://doi.org/10.1016/j.anifeedsci.2015.03.001. [CrossRef] [Google Scholar]
  8. Priyadarshana, K., et al., Substitution of Fishmeal with Black Soldier Fly Hermetia illucens Linnaeus, 1758 Larvae in Finfish Aquaculture -A Review. Asian Fisheries Science, 2021. 34. DOI: https://doi.Org/10.33997/j.afs.2021.34.2.001. [CrossRef] [Google Scholar]
  9. Riddick, E.W., Insect Protein as a Partial Replacement for Fishmeal in the Diets of Juvenile Fish and Crustaceans. 2014: p. 565–582. DOI: https://doi.org/10.1016/b978-0-12-391453-8.00016-9. [Google Scholar]
  10. Cummins, V.C., et al., Evaluation of black soldier fly (Hermetia illucens) larvae meal as partial or total replacement of marine fish meal in practical diets for Pacific white shrimp (Litopenaeus vannamei). Aquaculture, 2017. 473: p. 337–344. DOI: https://doi.org/10.1016/j.aquaculture.2017.02.022. [CrossRef] [Google Scholar]
  11. Belghit, I., et al., Black soldier fly larvae meal can replace fish meal in diets of sea-water phase Atlantic salmon (Salmo salar). Aquaculture, 2019. 503: p. 609–619. DOI: https://doi.org/10.1016/j.aquaculture.2018.12.032. [CrossRef] [Google Scholar]
  12. Fisher, H.J., et al., Black soldier fly larvae meal as a protein source in low fish meal diets for Atlantic salmon (Salmo salar). Aquaculture, 2020. 521: p. 734978. DOI: https://doi.org/10.1016/j.aquaculture.2020.734978. [CrossRef] [Google Scholar]
  13. Weththasinghe, P., et al., Full-fat black soldier fly larvae (Hermetia illucens) meal and paste in extruded diets for Atlantic salmon (Salmo salar): Effect on physical pellet quality, nutrient digestibility, nutrient utilization and growth performances. Aquaculture, 2021. 530: p. 735785. DOI: https://doi.org/10.1016/j.aquaculture.2020.735785. [CrossRef] [Google Scholar]
  14. Adeoye, A.A., et al., Preliminary assessment of black soldier fly (Hermetia illucens) larval meal in the diet of African catfish (Clarias gariepinus): Impact on growth, body index, and hematological parameters. Journal of the World Aquaculture Society, 2020. 51(4): p. 1024–1033. DOI: https://doi.org/10.1111/jwas.12691. [CrossRef] [Google Scholar]
  15. Devic, E., et al., Growth performance, feed utilization and body composition of advanced nursing Nile tilapia (Oreochromis niloticus) fed diets containing Black Soldier Fly (Hermetia illucens) larvae meal. Aquaculture Nutrition, 2018. 24(1): p. 416–423. DOI: https://doi.org/10.1111/anu.12573. [CrossRef] [Google Scholar]
  16. Yildirim-Aksoy, M., et al., Use of dietary frass from black soldier fly larvae, Hermetia illucens, in hybrid tilapia (Nile x Mozambique, Oreocromis niloticus x O. mozambique) diets improves growth and resistance to bacterial diseases. Aquaculture Reports, 2020. 17: p. 100373. DOI: https://doi.org/10.1016/j.aqrep.2020.100373. [CrossRef] [Google Scholar]
  17. Foysal, J., et al., Dietary supplementation of black soldier fly (Hermetica illucens) meal modulates gut microbiota, innate immune response and health status of marron (Cherax cainii, Austin 2002) fed poultry-by-product and fishmeal based diets. PeerJ, 2019. 7: p. e6891. DOI: https://doi.org/10.7717/peerj.6891. [CrossRef] [Google Scholar]
  18. Saputra, I. and R. Fotedar, Investigating the effect of various dietary protein to energy ratios on juvenile spiny lobsters, Panulirus ornatus (Fabricius, 1798). 2022, Research Square. [Google Scholar]
  19. Mohamad, S.J., et al., Evaluation of Carboxymethyl Cellulose (CMC) Binder and Squid Oil Attractant in the Formulation of Litopenaeus vannamei Diet. Jurnal Imiah Perikanan dan Kelautan, 2021. 13(2): p. 279–287. DOI: https://doi.org/10.20473/jipk.v13i2.24428. [CrossRef] [Google Scholar]
  20. Sudaryono, A., Pellet water stability studies on lupin meal based shrimp (Penaeus monodon) aquaculture feeds: comparison of lupin meal with other dietary protein sources. Journal of Coastal Development, 2001. 4(3): p. 129–140. [Google Scholar]
  21. Haetami, K., et al., Durability and Water Stability of Pellet Fish Supplementation Results pairing Coconut Oils and Hazlenut Oil. International Journal of Environment, Agriculture and Biotechnology (IJEAB) 2017. 2(3). DOI: https://doi.org/10.22161/ijeab/2.3.40. [Google Scholar]
  22. Al-Souti, A., et al., Attractability and palatability of formulated diets incorporated with chicken feather and algal meals for juvenile gilthead seabream, Sparus aurata. Aquaculture Reports, 2019. 14: p. 100199. DOI: https://doi.org/10.1016/j.aqrep.2019.100199. [CrossRef] [Google Scholar]
  23. AOAC, Official Methods of Analysis. Official Method 990.03 Protein (Crude) in Animal Feed. 2005. [Google Scholar]
  24. Chng, N.M., Determination of physical properties of meat: Determination of moisture., in Laboratory Manual on Analytical Methods and Procedures for Fish and Fish Products, K. Miwa and S.J. Low, Editors. 1992, Marine Fisheries Research Department, Southeast Asian Fisheries Development Center. p. A-1.1-A-1.3. [Google Scholar]
  25. AOAC, Official Methods of Analysis. Lipids, Fats and Oils Analysis Total Fat by Acid Hydrolysis Pet Food—Item 24. 2006. [Google Scholar]
  26. Hender, A., et al. Black Soldier Fly, Hermetia illucens as an Alternative to Fishmeal Protein and Fish Oil: Impact on Growth, Immune Response, Mucosal Barrier Status, and Flesh Quality of Juvenile Barramundi, Lates calcarifer (Bloch, 1790). Biology, 2021. 10, DOI: https://doi.org/10.3390/biology10060505. [CrossRef] [Google Scholar]
  27. Epa, U.P.K., M.J.S. Wijeyaratne, and S.S. De Silva, A Comparison of Proximate Composition and Water Stability of Three Selected Shrimp Feeds Used in Sri Lanka Asian Fisheries Science, 2007. 20: p. 7–22. [CrossRef] [Google Scholar]
  28. Haetami, K., et al., Durability and Water Stability of Pellet Fish Supplementation Results pairing Coconut Oils and Hazlenut Oil International Journal of Environment, Agriculture and Biotechnology, 2017. 2(1): p. 1336–1340. DOI: http://dx.doi.org/10.22161/ijeab/2.3.40. [CrossRef] [Google Scholar]
  29. Méndez-Martínez, Y., et al., Dry matter, protein, and energy digestibility of diets for juvenile Pacific white leg shrimps (Litopenaeus vannamei) reared at different salinity levels. Ciencia Rural, 2021. 51. DOI: https://doi.org/10.1590/0103-8478cr20190636. [Google Scholar]
  30. Gao, W., et al., Effect ofsalinity on the growth performance, osmolarity and metabolism- related gene expression in white shrimp Litopenaeus vannamei. Aquaculture Reports, 2016. 4: p. 125–129. DOI: https://doi.org/10.1016Zj.aqrep.2016.09.001. [CrossRef] [Google Scholar]
  31. Rahi, M.L., et al., Effects of Salinity on Physiological, Biochemical and Gene Expression Parameters ofBlack Tiger Shrimp (Penaeus monodon): Potential for Farming in Low-Salinity Environments. Biology (Basel), 2021. 10(12). DOI: https://doi.org/10.3390/biology10121220. [Google Scholar]
  32. Jones, C.M., Temperature and Salinity Tolerances of the Tropical Spiny Lobster, Panulirus ornatus. Journal of the World Aquaculture Society, 2009. 40(6): p. 744–752. DOI: https://doi.org/10.1111/j.1749-7345.2009.00294.x. [CrossRef] [Google Scholar]
  33. Vidya, K. and S. Joseph, Effect ofsalinity on growth and survival ofjuvenile Indian spiny lobster, Panulirus homarus (Linnaeus). Indian Journal of Fisheries, 2012. 59(1): p. 113–118. [Google Scholar]
  34. Saputra, I. and R. Fotedar, Growth Performance of Smooth Marron (Cherax cainii) Fed Different Dietary Protein Sources. Journal of Aquaculture and Fish Health, 2021. 10: p. 56–65. DOI: https://doi.org/10.20473/jafh.v10i1.20794. [CrossRef] [Google Scholar]
  35. Tumuluru, J.S., C. Conner, and A. Hoover, Method to Produce Durable Pellets at Lower Energy Consumption Using High Moisture Corn Stover and a Corn Starch Binder in a Flat Die Pellet Mill. Journal of Visualized Experiments, 2016. 2016. DOI: https://doi.org/10.3791/54092. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.