Open Access
Issue
MATEC Web Conf.
Volume 373, 2022
10th edition of the International Multidisciplinary Symposium “UNIVERSITARIA SIMPRO 2022”: Quality and Innovation in Education, Research and Industry – the Success Triangle for a Sustainable Economic, Social and Environmental Development
Article Number 00052
Number of page(s) 10
DOI https://doi.org/10.1051/matecconf/202237300052
Published online 20 December 2022
  1. B.-G. Chae, H.-J. Park, F. Catani, A. Simoni, M. Berti, Landslide prediction, monitoring and early warning: a concise review of state-of-the-art. Geosciences Journal 21, 6, p. 1033–1070 (2017) http://dx.doi.org/10.1007/s12303-017-0034-4 pISSN 1226–4806 eISSN 1598–7477 [Google Scholar]
  2. K. Sassa, P. Canuti, Y. Yin (Editors), Landslide Science for a Safer Geoenvironment, Volume 2: Methods of Landslide Studies (Springer, Switzerland, 2014) [Google Scholar]
  3. C. Kontoes, C. Loupasakis, I. Papoutsis, S. Alatza, E. Poyiadji, A. Ganas, C. Psychogyiou, M.Kaskara, S. Antoniadi, N. Spanou, Landslide Susceptibility Mapping of Central and Western Greece, Combining NGI and WoE Methods, with Remote Sensing and Ground Truth Data. Land 10, 402 (2021) https://doi.org/10.3390/land 10040402 [Google Scholar]
  4. V. Vakhshoori, H.R. Pourghasemi, M. Zare, T. Blaschke, Landslide Susceptibility Mapping Using GIS-Based Data Mining Algorithms. Water 11, 2292 (2019) doi:10.3390/w11112292 [Google Scholar]
  5. H. Huang, J. Ni, Y. Zhang, T. Qian, D. Shen, J. Wang, Web3DGIS-Based System for Reservoir Landslide Monitoring and Early Warning. Appl. Sci. 6, 44 (2016) doi:10.3390/app6020044 [Google Scholar]
  6. D. Turner, A. Lucieer, S.M. De Jong, Time Series Analysis of Landslide Dynamics Using an Unmanned Aerial Vehicle (UAV). Remote Sens. 7 (2015) 1736–1757. https://doi.org/10.3390/rs70201736 [Google Scholar]
  7. G. Rossi, L. Tanteri, V. Tofani, et al. Multitemporal UAV surveys for landslide mapping and characterization. Landslides 15, 1045–1052 (2018) https://doi.org/10.1007/s10346-018-0978-0 [Google Scholar]
  8. M.V. Peppa, J.P. Mills, P. Moore, P.E. Miller, J.E. Chambers, Accuracy assessment of a UAVbased landslide monitoring system. ISPRS – International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B5, 895–902 (2016) https://doi.org/10.5194/isprsarchives-XLI-B5-895-2016 [Google Scholar]
  9. A. Kyriou, K. Nikolakopoulos, I. Koukouvelas, P. Lampropoulou, Repeated UAV Campaigns, GNSS Measurements, GIS, and Petrographic Analyses for Landslide Mapping and Monitoring. Minerals 11, 300 (2021) https://doi.org/10.3390/min11030300 [Google Scholar]
  10. C. Steiakakis, Ε. Apostolou, G. Papavgeri, Large moving landslide inside a lignite mine in northern Greece, Book chapter in: Landslides and Engineered Slopes. Experience, Theory and Practice, Edition 1st (CRC Press, 2016). eBook ISBN9781315375007 [Google Scholar]
  11. I.E. Zevgolis, A.V. Deliveris, N.C. Koukouzas, Slope failure incidents and other stability concerns in surface lignite mines in Greece, Journal of Sustainable Mining 18, 4, 182–197 (2019) [Google Scholar]
  12. A. Kyriou, K. Nikolakopoulos, Landslide mapping using optical and radar data: a case study from Aminteo, Western Macedonia Greece, European Journal of Remote Sensing 53, sup2, 17–27 (2020) DOI: 10.1080/22797254.2019.1681905 [Google Scholar]
  13. Leica Geosystems, Leica TS30/TM50 User Manual, Version 3.0 [Google Scholar]
  14. SenseFly, Ebee RTK Extended User Manual Revision 3, December 2014, SenseFly [Google Scholar]
  15. www.foreca.com [Google Scholar]
  16. www.stravon.gr [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.