Open Access
Issue
MATEC Web Conf.
Volume 370, 2022
2022 RAPDASA-RobMech-PRASA-CoSAAMI Conference - Digital Technology in Product Development - The 23rd Annual International RAPDASA Conference joined by RobMech, PRASA and CoSAAMI
Article Number 09003
Number of page(s) 13
Section Computational & Data-driven Modelling
DOI https://doi.org/10.1051/matecconf/202237009003
Published online 01 December 2022
  1. A. M. Pușcașu, O. Lupescu, and A. Bădănac, Analysis of cylindrical roller bearings design in order to optimize the classical process using FEM, vol. 112, p. 06017: EDP Sciences (2017) [Google Scholar]
  2. R. Das and M. Pradhan, Handbook of Research on Manufacturing Process Modeling and Optimization Strategies. IGI Global (2017) [CrossRef] [Google Scholar]
  3. Z. Yongqi, T. Qingchang, Z. Kuo, and L. Jiangang, Analysis of Stress and Strain of the Rolling Bearing by FEA method, Physics Procedia, 24, PP. 19–24 (2012) [CrossRef] [Google Scholar]
  4. P. Chunjun, Static analysis of rolling bearings using finite element method, University of Stuttgart (2009) [Google Scholar]
  5. H. Saruhan, S. Saridemir, A. Qicek, and I. Uygur, JART, 12, 384–395 (2014) [CrossRef] [Google Scholar]
  6. F. Wang, M. Jing, J. Yi, G. Dong, H. Liu, and B. Ji, Proc. Inst. Mech. Eng, 229, 39–64 (2015) [Google Scholar]
  7. N. Lynagh, H. Rahnejat, M. Ebrahimi, and R. Aini,, Int. J. Mach. Tools Manuf., 40, 561–577 (2000) [CrossRef] [Google Scholar]
  8. N. Tandon and A. Choudhury, Tribol. Int., 32, PP. 469–480 (1999) [CrossRef] [Google Scholar]
  9. T. Mashiyane, D. Desai, and L. Tartibu, Arab J Sci Eng, 1–11 (2021) [Google Scholar]
  10. T. Mashiyane, D. Desai, and L. Tartibu, Cogent Eng., 9, 2021837 (2022) [CrossRef] [Google Scholar]
  11. F. Ma, Z. Li, S. Qiu, B. Wu, and Q. An, Tribol. Int., 93, 115–123 (2016) [CrossRef] [Google Scholar]
  12. S. E. Deng, Q. Y. Jia, and J. X. Xue, “Design principles of rolling bearings,” Standards Press of China, Beijing, (2014) [Google Scholar]
  13. T. A. Harris and M. N. Kotzalas, Advanced concepts of bearing technology: rolling bearing analysis. CRC press, (2006) [CrossRef] [Google Scholar]
  14. F. Pouly, C. Changenet, F. Ville, P. Velex, and B. Damiens, Tribol. Trans., 53, 957–967 (2010) [CrossRef] [Google Scholar]
  15. L. Q. Wang, “Design and numerical analysis of rolling element bearing for extreme applications,” ed: Harbin: Harbin Institute of Technology Press, (2013) [Google Scholar]
  16. X. Zhu, “Tutorial on hertz contact stress,” in OPTI 521, 2012, vol. 521, PP. 1–8. [Google Scholar]
  17. Chula. (2017). Contact stresses. Available: http://pioneer.netserv.chula.ac.th/~ltachai/tribology/tribo_ch07.pdf [Google Scholar]
  18. SKF-Group. (2019, 11/05/2021). Components and materials. Available: https://www.skf.com/africa/en/products/rolling-bearings/principles-of-rolling-bearing-selection/general-bearing-knowledge/bearing-basics/components-and-materials [Google Scholar]
  19. S. Salifu, D. Desai, and S. Kok, Mater. Eng. Perform, 29, 1–14 (2020) [Google Scholar]
  20. S. Salifu, D. Desai, and S. Kok, Numerical simulation and creep-life prediction of X20 steam piping, Materials Today: Proceedings (2020) [Google Scholar]
  21. S. Salifu, D. Desai, F. Fameso, O. Ogunbiyi, S. Jeje, and A. Rominiyi, Thermo-mechanical analysis of bolted X20 steam pipe-flange assembly, Materials Today: Proceedings (2020) [Google Scholar]
  22. G. Hlebanja, M. Hriberšek, M. Erjavec, and S. Kulovec, “Durability Investigation of plastic gears, 287, 02003: EDP Sciences (2019) [Google Scholar]
  23. S. Salifu, D. Desai, S. Kok, and O. Ogunbiyi, Thermo-mechanical stress simulation of unconstrained region of straight X20 steam pipe, Procedia Manufacturing, 35, 1330–1336 (2019) [CrossRef] [Google Scholar]
  24. S. Salifu, D. Desai, and S. Kok, Int. J. Adv. Manuf., 109, 1987–1996 (2020) [CrossRef] [Google Scholar]
  25. S. Salifu, D. Desai, and S. Kok, Numerical investigation of creep-fatigue interaction of straight P91 steam pipe subjected to start-up and shutdown cycles, Materials Today: Proceedings (2020) [Google Scholar]
  26. S. Salifu, D. Desai, and S. Kok, J. Fail. Anal. Prev, 20, 1055–1064 (2020). [CrossRef] [Google Scholar]
  27. S. Salifu, D. Desai, and S. Kok, J. Fail. Anal. Prev, 21, 1–10 (2021) [Google Scholar]
  28. S. Salifu, D. Desai, and S. Kok, Determination of the dominant failure mechanism of P92 steam piping subjected to daily operational cycle using finite element (FE) technique, Suid-Afrikaans Tydskrif vir Natuurwetenskap en Tegnologie/South African Journal of Science and Technology, vol. 40, no. 1, PP.B 37–43 (2021) [CrossRef] [Google Scholar]
  29. S. Salifu, D. A. Desai, and S. Kok, Int. J. Eng. Res, 57, 19–32, Trans Tech Publ (2021) [Google Scholar]
  30. K. Venkatesh and K. R. Prasad, “Finite Element Solution for Thermal Analysis of NiTiNOL-60 Ball Bearing (2017) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.