Issue |
MATEC Web Conf.
Volume 370, 2022
2022 RAPDASA-RobMech-PRASA-CoSAAMI Conference - Digital Technology in Product Development - The 23rd Annual International RAPDASA Conference joined by RobMech, PRASA and CoSAAMI
|
|
---|---|---|
Article Number | 09003 | |
Number of page(s) | 13 | |
Section | Computational & Data-driven Modelling | |
DOI | https://doi.org/10.1051/matecconf/202237009003 | |
Published online | 01 December 2022 |
Numerical simulation of the effect of angular misalignment on the dynamic behaviour of bearing
1 Department of Mechanical and Mechatronics Engineering, Tshwane University of Technology, Pretoria, South Africa
2 Department of Mechanical and Industrial Engineering Technology, University of Johannesburg, South Africa
* Corresponding author: tmashiyane12@gmail.com
Bearing has been used extensively in numerous applications and their unplanned failure has a consequential effect on the smooth operation of the machinery. A slight misalignment in bearing has a detrimental effect on the smooth running of most machines. Hence, the paper leverages finite element technique to simulate the consequential effect of different degrees (0.1°, 0.2°, 0.3°, 0.4°, 0.5°) of misalignment on the dynamic behaviour of a cylindrical roller bearing subjected to typical operating conditions of an airflow root blower. The results of the study show that during operation, the temperature and Hertzian stress developed increased with an increase in the degree of misalignment and operating/rotating speed, and the maximum Hertzian stress was developed on the outer ring of the bearing in all the degrees of misalignments and operational speeds considered. Thus, making the outer ring of the bearing component, the most prone to failure during operation in the presence of misalignment.
Key words: Bearing / misalignment / Hertzian stress / failure / friction
© The Authors, published by EDP Sciences, 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.