Open Access
Issue
MATEC Web Conf.
Volume 370, 2022
2022 RAPDASA-RobMech-PRASA-CoSAAMI Conference - Digital Technology in Product Development - The 23rd Annual International RAPDASA Conference joined by RobMech, PRASA and CoSAAMI
Article Number 08001
Number of page(s) 10
Section AM Part Characterisation
DOI https://doi.org/10.1051/matecconf/202237008001
Published online 01 December 2022
  1. L. C. Zhang, D. Klemm, J. Eckert, Y. L. Hao, and T. B. Sercombe, “Manufacture by selective laser melting and mechanical behavior of a biomedical Ti–24Nb–4Zr–8Sn alloy,” Scr. Mater., vol. 65, no. 1, pp.21–24, 2011. [CrossRef] [Google Scholar]
  2. L. Hitzler, M. Merkel, W. Hall, and A. Öchsner, “A Review of Metal Fabricated with Laser- and Powder-Bed Based Additive Manufacturing Techniques: Process, Nomenclature, Materials, Achievable Properties, and its Utilisation in the Medical Sector,” Adv. Eng. Mater., vol. 20, no. 5, pp.1–28, 2018, doi:10.1002/adem.201700658. [CrossRef] [Google Scholar]
  3. H. Ali, H. Ghadbeigi, and K. Mumtaz, “Processing Parameter Effects on Residual Stress and Mechanical Properties of Selective Laser Melted Ti6Al4 V,” J. Mater. Eng. Perform., vol. 27, no. 8, pp.4059–4068, 2018, doi:10.1007/s11665-018-3477-5. [CrossRef] [Google Scholar]
  4. C. Pleass and S. Jothi, “Influence of powder characteristics and additive manufacturing process parameters on the microstructure and mechanical behaviour of Inconel 625 fabricated by Selective Laser Melting,” Addit. Manuf., vol. 24, no. September, pp.419–431, 2018, doi:10.1016/j.addma.2018.09.023. [Google Scholar]
  5. S. Bai, N. Perevoshchikova, Y. Sha, and X. Wu, “The effects of selective laser melting process parameters on relative density of the AlSi10 Mg parts and suitable procedures of the archimedes method,” Appl. Sci., vol. 9, no. 3, 2019, doi:10.3390/app9030583. [Google Scholar]
  6. G. Kasperovich, J. Haubrich, J. Gussone, and G. Requena, “Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting,” Mater. Des., vol. 105, pp.160–170, 2016, doi:10.1016/j.matdes.2016.05.070. [CrossRef] [Google Scholar]
  7. L. Tonelli, E. Liverani, G. Valli, A. Fortunato, and L. Ceschini, “Effects of powders and process parameters on density and hardness of A357 aluminum alloy fabricated by selective laser melting,” Int. J. Adv. Manuf. Technol., vol. 106, no. 1–2, pp.371–383, 2020, doi:10.1007/s00170-019-04641-x. [CrossRef] [Google Scholar]
  8. S. A. Farzadfar, M. J. Murtagh, and N. Venugopal, “Impact of IN718 bimodal powder size distribution on the performance and productivity of laser powder bed fusion additive manufacturing process,” Powder Technol., vol. 375, pp.60–80, 2020, doi:10.1016/j.powtec.2020.07.092. [CrossRef] [Google Scholar]
  9. S. Pal et al., “The effects of locations on the build tray on the quality of specimens in powder bed additive manufacturing,” Int. J. Adv. Manuf. Technol., vol. 112, no. 3–4, pp.1159–1170, 2021, doi:10.1007/s00170-020-06563-5. [CrossRef] [Google Scholar]
  10. A. T. Sutton, C. S. Kriewall, M. C. Leu, and J. W. Newkirk, “Powder characterisation techniques and effects of powder characteristics on part properties in powder-bed fusion processes,” Virtual Phys. Prototyp., vol. 12, no. 1, pp.3–29, 2017, doi:10.1080/17452759.2016.1250605. [CrossRef] [Google Scholar]
  11. P. A. Kuznetsov, I. V. Shakirov, A. S. Zukov, V. V. Bobyr’, and M. V. Starytsin, “Effect of particle size distribution on the structure and mechanical properties in the process of laser powder bed fusion,” J. Phys. Conf. Ser., vol. 1758, no. 1, 2021, doi:10.1088/1742-6596/1758/1/012021. [Google Scholar]
  12. R. H. Bochuan Liu, Ricky Wildman, Christopher Tuck, Ian Ashcroft, “Investigation the Effect of Particle Size Distribution on Processing Parameters Optimisation in Selective Laser Melting Process,” Addit. Manuf. Res. group , Loughbrgh. Univ., no. mm, pp.227–238, 2011. [Google Scholar]
  13. S. E. Brika, M. Letenneur, C. A. Dion, and V. Brailovski, “Influence of particle morphology and size distribution on the powder flowability and laser powder bed fusion manufacturability of Ti-6Al-4 V alloy,” Addit. Manuf., vol. 31, no. November 2019, p.100929, 2020, doi:10.1016/j.addma.2019.100929. [Google Scholar]
  14. A. B. Spierings, N. Herres, and G. Levy, “Influence of the particle size distribution on surface quality and mechanical properties in AM steel parts,” Rapid Prototyp. J., vol. 17, no. 3, pp.195–202, 2011, doi:10.1108/13552541111124770. [CrossRef] [Google Scholar]
  15. G. Jacob, A. Donmez, J. Slotwinski, and S. Moylan, “Measurement of powder bed density in powder bed fusion additive manufacturing processes,” Meas. Sci. Technol., vol. 27, no. 11, 2016, doi:10.1088/0957-0233/27/11/115601. [CrossRef] [Google Scholar]
  16. D. Gu, M. Xia, and D. Dai, “On the role of powder flow behavior in fluid thermodynamics and laser processability of Ni-based composites by selective laser melting,” Int. J. Mach. Tools Manuf., vol. 137, no. July 2018, pp.67–78, 2019, doi:10.1016/j.ijmachtools.2018.10.006. [CrossRef] [Google Scholar]
  17. H. Nakamura, Y. Kawahito, K. Nishimoto, and S. Katayama, “Elucidation of melt flows and spatter formation mechanisms during high power laser welding of pure titanium,” J. Laser Appl., vol. 27, no. 3, p.32012, 2015. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.