Open Access
Issue
MATEC Web Conf.
Volume 370, 2022
2022 RAPDASA-RobMech-PRASA-CoSAAMI Conference - Digital Technology in Product Development - The 23rd Annual International RAPDASA Conference joined by RobMech, PRASA and CoSAAMI
Article Number 06003
Number of page(s) 9
Section Process Development
DOI https://doi.org/10.1051/matecconf/202237006003
Published online 01 December 2022
  1. GE. Additive. 2022. Additive Manufacturing: Aviation and Aerospace, [ONLINE], Available at: https://www.ge.com/additive/additive-manufacturing/industries/aviation-aerospace [Accessed 27 April 2022] [Google Scholar]
  2. S. Shrestha, T. Starr, & K. Chou. Proceedings of the ASME 2018 International Mechanical Engineering Congress and Exposition, Porosity Analysis in Metal Additive Manufacturing by Micro-CT. 2 (2018). [Google Scholar]
  3. L. Scime, And J. Beuth. Additive Manufacturing, Anomaly detection and classification in a laser powder bed additive manufacturing process using a trained computer vision algorithm., 19, pp. 114–26 (2018). [Google Scholar]
  4. A. Wiberg. Linköping Studies in Science and Technology. Licentiate Thesis, “Towards Design Automation for Additive Manufacturing: A Multidisciplinary Optimization approach.” (2019). [Google Scholar]
  5. Q. Y. Lu & C. H. Wong, Virtual and Physical Prototyping, Additive manufacturing process monitoring and control by non-destructive testing techniques: challenges and in-process monitoring, 13:2, 39–48, (2018), doi:10.1080/17452759.2017.1351201 [Google Scholar]
  6. J.M. Waller, P.H. Bradford, H.L. Kenneth, B.R. Eric and J. Walker. “Nondestructive Evaluation of Additive Manufacturing State-of-the-Discipline Report.” (2014). [Google Scholar]
  7. S. Kleszczynski, & J. zur Jacobsmühlen, & J. Sehrt & G. Witt, 23rd Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference, SFF 2012, Error detection in laser beam melting systems by high resolution imaging. 975–987. (2012). [Google Scholar]
  8. T. Craeghs, S. Clijsters, E. Yasa, and JP. Kruth, Proceedings of the 20th Solid Freeform Fabrication (SFF) Symposium, Austin (Texas), “Online Quality Control of Selective Laser Melting.”, 8–10 August, 212–26, (2011). [Google Scholar]
  9. L. Scime, D. Siddel, S. Baird, V. Paquit, Additive Manufacturing, Layer-wise anomaly detection and classification for powder bed additive manufacturing processes: A machine-agnostic algorithm for real-time pixel-wise semantic segmentation, 36, (2020). [Google Scholar]
  10. R. Yavari, Z. Smoqi, A. Riensche, B. Bevans, H. Kobir, H. Mendoza, H. Song, K. Cole, P. Rao, Materials & Design, Part-scale thermal simulation of laser powder bed fusion using graph theory: Effect of thermal history on porosity, microstructure evolution, and recoater crash, 204, (2021). [Google Scholar]
  11. P. Quinn, & S. Uí Mhurchadha, & R. Catriona & A. Parnell, & J. Lawlor & R. Raghavendra, 2019 Solid Freeform Fabrication Symposium Proceedings, Development of a standalone in-situ monitoring system for defect detection in the direct metal laser sintering process, (2019). [Google Scholar]
  12. M.B. Islier, and K. Dortkasli, Journal of Additive Manufacturing Technologies, “Powder coater monitoring for detection of anomalies in DMLM process”, 1(2), p. 543. (2021). doi:10.18416/JAMTECH.2111543. [Google Scholar]
  13. M. Seifi, M. Gorelik, J. Waller, et al. Progress Towards Metal Additive Manufacturing Standardization to Support Qualification and Certification. JOM 69, 439–455 (2017). https://doi.org/10.1007/s11837-017-2265-2 [Google Scholar]
  14. A. Brown, Z. Jones, W. Tilson, TMS 2017 Annual meeting and Exhibition, Classification, Effects, and Prevention of Build Defects in Powder-Bed Fusion Printed Inconel 718. (2017) [Google Scholar]
  15. B.A. Smith, C.M. Laursen, J. Bartanus, et al. Exp Mech 61, The Interplay of Geometric Defects and Porosity on the Mechanical Behavior of Additively Manufactured Components. 685–698 (2021). https://doi.org/10.1007/s11340-021-00696-8 [Google Scholar]
  16. T. Schlauf, M. Lutter-Günther & C. Rosenkranz, Zenodo, Project report – AM 4 Industry – LBM Additive Manufacturing Defect Catalogue. (2019). https://doi.org/10.5281/zenodo.3540604 [Google Scholar]
  17. R. Ullah, J.S. Akmal, S.V.A Laakso, et al. Int J Adv Manuf Technol 107 Anisotropy of additively manufactured AlSi10 Mg: threads and surface integrity., 3645–3662 (2020). https://doi.org/10.1007/s00170-020-05243-8 [Google Scholar]
  18. Karimi Neghlani, P. SLM additive manufacturing of Alloy 718 : effect of process parameters on microstructure and properties (Dissertation). (2016). [Google Scholar]
  19. A.Y. Al-Maharma, S.P. Patil, and B. Markert, Materials Research Express, “Effects of porosity on the mechanical properties of additively manufactured components: a critical review”, 7(12), (2020.) doi:10.1088/2053-1591/abcc5d [Google Scholar]
  20. S. Jones, C. Yuan, Journal of Materials Processing Technology, Advances in shell moulding for investment casting, 135(2–3), pp 258–265, (2003). [Google Scholar]
  21. F. Du Rand, Development Of An Additive Manufacturing Re-Coater Monitoring System For Powder Bed Fusion Systems. Magister Technologiae (Dissertation), Vaal University of Technology, (2018). [Google Scholar]
  22. S. Saunders. 2022. 3DQue’s QuinlyVision Automates 3D Print Failure Detection, [ONLINE], Available at: https://3dprint.com/291888/3dque-launches-quinlyvision-automated-3d-print-failure-detection-system/ [Accessed 20 June 2022] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.