Open Access
Issue
MATEC Web Conf.
Volume 370, 2022
2022 RAPDASA-RobMech-PRASA-CoSAAMI Conference - Digital Technology in Product Development - The 23rd Annual International RAPDASA Conference joined by RobMech, PRASA and CoSAAMI
Article Number 03007
Number of page(s) 10
Section Material Development
DOI https://doi.org/10.1051/matecconf/202237003007
Published online 01 December 2022
  1. C. Kenesi, “Biomaterials in orthopedic surgery,” Concours Med., vol. 106, no. 20, pp.1879–1890, 1984. [Google Scholar]
  2. I. Kopova, J. Stráský, P. Harcuba, M. Landa, M. Janeček, and L. Bačákova, “Newly developed Ti-Nb-Zr-Ta-Si-Fe biomedical beta titanium alloys with increased strength and enhanced biocompatibility,” Mater. Sci. Eng. C, vol. 60, pp.230–238, 2016, doi: 10.1016/j.msec.2015.11.043. [CrossRef] [Google Scholar]
  3. M. Geetha, A. K. Singh, R. Asokamani, and A. K. Gogia, “Ti based biomaterials, the ultimate choice for orthopaedic implants – A review,” Prog. Mater. Sci., vol. 54, no. 3, pp.397–425, 2009, doi: 10.1016/j.pmatsci.2008.06.004. [CrossRef] [Google Scholar]
  4. M. Niinomi and M. Nakai, “Titanium-based biomaterials for preventing stress shielding between implant devices and bone,” Int. J. Biomater., vol. 2011, 2011, doi: 10.1155/2011/836587. [CrossRef] [Google Scholar]
  5. S. Guo, Q. Meng, X. Zhao, Q. Wei, and H. Xu, “Design and fabrication of a metastable β-type titanium alloy with ultralow elastic modulus and high strength,” Sci. Rep., vol. 5, no. September, pp.1–8, 2015, doi: 10.1038/srep14688. [Google Scholar]
  6. C. Marker, S. L. Shang, J. C. Zhao, and Z. K. Liu, “Elastic knowledge base of bcc Ti alloys from first-principles calculations and CALPHAD-based modeling,” Comput. Mater. Sci., vol. 140, pp.121–139, 2017, doi: 10.1016/j.commatsci.2017.08.037. [CrossRef] [Google Scholar]
  7. C. Marker, S. L. Shang, J. C. Zhao, and Z. K. Liu, “Effects of alloying elements on the elastic properties of bcc Ti-X alloys from first-principles calculations,” Comput. Mater. Sci., vol. 142, pp.215–226, 2018, doi: 10.1016/j.commatsci.2017.10.016. [CrossRef] [Google Scholar]
  8. K. Miura, N. Yamada, S. Hanada, T. K. Jung, and E. Itoi, “The bone tissue compatibility of a new Ti-Nb-Sn alloy with a low Young’s modulus,” Acta Biomater., vol. 7, no. 5, pp.2320–2326, 2011, doi: 10.1016/j.actbio.2011.02.008. [CrossRef] [Google Scholar]
  9. Y. Abdelrhman, M. A. H. Gepreel, S. Kobayashi, S. Okano, and T. Okamoto, “Biocompatibility of new low-cost (α + β)-type Ti-Mo-Fe alloys for long-term implantation,” Mater. Sci. Eng. C, vol. 99, no. June, pp.552–562, 2019, doi: 10.1016/j.msec.2019.01.133. [CrossRef] [Google Scholar]
  10. Y. Torres, S. Lascano, J. Bris, J. Pavón, and J. A. Rodriguez, “Development of porous titanium for biomedical applications: A comparison between loose sintering and space-holder techniques,” Mater. Sci. Eng. C, vol. 37, no. 1, pp.148–155, 2014, doi: 10.1016/j.msec.2013.11.036. [CrossRef] [Google Scholar]
  11. O. P. J. Joris, “Diffraction experiments on superelastic beta titanium alloys,” PQDT - UK Irel., 2014, [Online]. Available: https://search.proquest.com/docview/1913431546?accountid=13607%0Ahttp://e-tidsskrifter.kb.dk/resolve??url_ver=Z39.88–2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&genre=dissertations+%26+theses&sid=ProQ:&atitle=&title=Diffraction+experiments+on+super. [Google Scholar]
  12. L. B. Zhang, K. Z. Wang, L. J. Xu, S. L. Xiao, and Y. Y. Chen, “Effect of Nb addition on microstructure, mechanical properties and castability of β-type Ti-Mo alloys,” Trans. Nonferrous Met. Soc. China (English Ed., vol. 25, no. 7, pp.2214–2220, 2015, doi: 10.1016/S1003-6326(15)63834-1. [CrossRef] [Google Scholar]
  13. F. Kafkas and T. Ebel, “Metallurgical and mechanical properties of Ti – 24Nb – 4Zr – 8Sn alloy fabricated by metal injection molding,” vol. 617, pp.359–366, 2014, doi: 10.1016/j.jallcom.2014.07.168. [Google Scholar]
  14. I. V. Okulov et al., “Composition optimization of low modulus and high-strength TiNb-based alloys for biomedical applications,” J. Mech. Behav. Biomed. Mater., vol. 65, no. October 2016, pp.866–871, 2017, doi: 10.1016/j.jmbbm.2016.10.013. [CrossRef] [Google Scholar]
  15. M. T. Mohammed, Z. A. Khan, and A. N. Siddiquee, “Titanium and its Alloys, the Imperative Materials for Biomedical Applications,” Int. Conf. Recent Trends Eng. Technol., no. November, pp.91–95, 2012. [Google Scholar]
  16. Y. L. Zhou and D. M. Luo, “Microstructures and mechanical properties of Ti-Mo alloys cold-rolled and heat treated,” Mater. Charact., vol. 62, no. 10, pp.931–937, 2011, doi: 10.1016/j.matchar.2011.07.010. [CrossRef] [Google Scholar]
  17. K. K. Tseng, C. C. Juan, S. Tso, H. C. Chen, C. W. Tsai, and J. W. Yeh, “Effects of Mo, Nb, Ta, Ti, and Zr on mechanical properties of equiatomic Hf-Mo-Nb-Ta-Ti- Zr alloys,” Entropy, vol. 21, no. 1, pp.1–14, 2019, doi: 10.3390/e21010015. [Google Scholar]
  18. S. B. Gabriel, C. A. Nunes, and G. D. A. Soares, “Production, microstructural characterization and mechanical properties of As-Cast Ti-10Mo-xNb alloys,” Artif. Organs, vol. 32, no. 4, pp.299–304, 2008, doi: 10.1111/j.1525-1594.2008.00546.x. [CrossRef] [Google Scholar]
  19. N. A. Moshokoa, M. L. Raganya, R. Machaka, M. E. Makhatha, and B. A. Obadele, “The effect of molybdenum content on the microstructural evolution and tensile properties of as-cast Ti-Mo alloys,” Mater. Today Commun., vol. 27, no. April, p. 102347, 2021, doi: 10.1016/j.mtcomm.2021.102347. [Google Scholar]
  20. V. Anil Kumar, R. K. Gupta, and G. Sudarsana Rao, “Solution Treatment and Aging (STA) Study of Ti Alloy Ti5Al3Mo1.5V,” J. Mater. Eng. Perform., vol. 24, no. 1, pp.24–31, 2015, doi: 10.1007/s11665-014-1294-z. [CrossRef] [Google Scholar]
  21. S. Rajan Soundararajan, J. Vishnu, G. Manivasagam, and N. Rao Muktinutalapati, “Heat Treatment of Metastable Beta Titanium Alloys,” Weld. – Mod. Top., no. May, 2021, doi: 10.5772/intechopen.92301. [Google Scholar]
  22. F. Sun, F. Prima, and T. Gloriant, “High-strength nanostructured Ti-12Mo alloy from ductile metastable beta state precursor,” Mater. Sci. Eng. A, vol. 527, no. 16– 17, pp.4262–4269, 2010, doi: 10.1016/j.msea.2010.03.044. [CrossRef] [Google Scholar]
  23. X. Zhao, M. Niinomi, M. Nakai, and J. Hieda, “Acta Biomaterialia Beta type Ti – Mo alloys with changeable Young ’ s modulus for spinal fixation applications,” Acta Biomater., vol. 8, no. 5, pp.1990–1997, 2012, doi: 10.1016/j.actbio.2012.02.004. [CrossRef] [Google Scholar]
  24. J. Lin et al., “Effects of solution treatment and aging on the microstructure, mechanical properties, and corrosion resistance of a β type Ti-Ta-Hf-Zr alloy,” RSC Adv., vol. 7, no. 20, pp.12309–12317, 2017, doi: 10.1039/c6ra28464g. [Google Scholar]
  25. C. Zhao, X. Zhang, and P. Cao, “Mechanical and electrochemical characterization of Ti-12Mo-5Zr alloy for biomedical application,” J. Alloys Compd., vol. 509, no. 32, pp.8235–8238, 2011, doi: 10.1016/j.jallcom.2011.05.090. [CrossRef] [Google Scholar]
  26. P. J. Bania, “Beta titanium alloys and their role in the titanium industry,” Jom, vol. 46, no. 7, pp.16–19, 1994, doi: 10.1007/BF03220742. [CrossRef] [Google Scholar]
  27. P. S. Nnamchi, “First principles studies on structural, elastic and electronic properties of new TiMoNbZr alloys for biomedical applications,” Mater. Des., vol. 108, pp.60–67, 2016, doi: 10.1016/j.matdes.2016.06.066. [CrossRef] [Google Scholar]
  28. M. Buzatu et al., “Obtaining and characterization of the Ti15Mo5W alloy for biomedical applications,” Mater. Plast., vol. 54, no. 3, pp.596–600, 2017, doi: 10.37358/mp.17.3.4905. [CrossRef] [Google Scholar]
  29. N. T. C. Oliveira, G. Aleixo, R. Caram, and A. C. Guastaldi, “Development of Ti- Mo alloys for biomedical applications: Microstructure and electrochemical characterization,” Mater. Sci. Eng. A, vol. 452–453, pp.727–731, 2007, doi: 10.1016/j.msea.2006.11.061. [CrossRef] [Google Scholar]
  30. A. Almeida, D. Gupta, C. Loable, and R. Vilar, “Laser-assisted synthesis of Ti – Mo alloys for biomedical applications,” Mater. Sci. Eng. C, vol. 32, no. 5, pp.1190–1195, 2012, doi: 10.1016/j.msec.2012.03.007. [CrossRef] [Google Scholar]
  31. R. Davis, H. M. Flower, and D. R. F. West, “Martensitic transformations in Ti-Mo alloys,” J. Mater. Sci., vol. 14, no. 3, pp.712–722, 1979, doi: 10.1007/BF00772735. [CrossRef] [Google Scholar]
  32. Y. Danard, L. Lilensten, C. Brozek, F. Sun, P. Vermaut, and F. Prima, “Development of New Titanium Alloys with High Strain Hardening Thanks to Combined TRIP and TWIP Effects: Microstructure/Mechanical Properties Relationships,” TMS 2018 147th Annu. Meet. Exhib., no. March, p. 961, 2018, doi: 10.1007/978-3-319-72526-0. [Google Scholar]
  33. J. Ruzic, S. Emura, X. Ji, and I. Watanabe, “Mo segregation and distribution in Ti– Mo alloy investigated using nanoindentation,” Mater. Sci. Eng. A, vol. 718, no. January, pp.48–55, 2018, doi: 10.1016/j.msea.2018.01.098. [CrossRef] [Google Scholar]
  34. M. Niinomi, “Mechanical biocompatibilities of titanium alloys for biomedical applications,” J. Mech. Behav. Biomed. Mater., vol. 1, no. 1, pp.30–42, 2008, doi: 10.1016/j.jmbbm.2007.07.001. [CrossRef] [Google Scholar]
  35. H.-C. Hsu, S.-C. Wu, Y.-S. Hong, and W.-F. Ho, “Mechanical properties and deformation behavior of as-cast Ti–Sn alloys,” J. Alloys Compd., vol. 479, no. 1–2, pp.390–394, Jun. 2009, doi: 10.1016/j.jallcom.2008.12.064. [CrossRef] [Google Scholar]
  36. Y. Xu, J. Gao, Y. Huang, and W. M. Rainforth, “A low-cost metastable beta Ti alloy with high elastic admissible strain and enhanced ductility for orthopaedic application,” J. Alloys Compd., vol. 835, p. 155391, 2020, doi: 10.1016/j.jallcom.2020.155391. [Google Scholar]
  37. M. R. Dal et al., “The effect of Zr and Sn additions on the microstructure of Ti-Nb- Fe gum metals with high elastic admissible strain,” Mater. Des., vol. 160, pp.1186–1195, 2018, doi: 10.1016/j.matdes.2018.10.040. [CrossRef] [Google Scholar]
  38. S. W. Lee, J. H. Kim, C. H. Park, J. K. Hong, and J. T. Yeom, “Alloy design of metastable α+β titanium alloy with high elastic admissible strain,” Mater. Sci. Eng. A, vol. 802, no. September 2020, p. 140621, 2021, doi: 10.1016/j.msea.2020.140621. [Google Scholar]
  39. S. Ozan, J. Lin, Y. Li, R. Ipek, and C. Wen, “Development of Ti-Nb-Zr alloys with high elastic admissible strain for temporary orthopedic devices,” Acta Biomater., vol. 20, pp.176–187, 2015, doi: 10.1016/j.actbio.2015.03.023. [CrossRef] [Google Scholar]
  40. Ann L Coker and M. K. Nalawansha, Dhanusha A. Pflum, “乳鼠心肌提取 HHS Public Access,” Physiol. Behav., vol. 176, no. 5, pp.139–148, 2017, doi: 10.1146/annurev-bioeng-062117-121139.Bone. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.