Open Access
MATEC Web Conf.
Volume 368, 2022
NEWTECH 2022 – The 7th International Conference on Advanced Manufacturing Engineering and Technologies
Article Number 01015
Number of page(s) 15
Section Advanced Manufacturing Engineering and Technologies
Published online 19 October 2022
  1. A. Kusiak, Fundamentals of smart manufacturing: A multi-thread perspective, Annual Reviews in Control, Vol. 47, 2019, 214-220. [CrossRef] [Google Scholar]
  2. J. P. U. Cadavid, S. Lamouri, B. Grabot, A. Fortin, Machine Learning n Production Planning and Control: A Review of Empirical Literature, 9th IFAC conference on Manufacturing Modeling, Management and Control, Dmitry Ivanov et al. (Ed.), pp. 385–390, Berlin, Germany, August 28-30, 2019. [Google Scholar]
  3. L. Monostori, P. Valckenaers, A. Dolgui, H. Panetto, M. Brdys, B. C. Csáji, Cooperative control in production and logistics, Annual Reviews in Control, Vol. 39, 2015, 12–29. www.doi.10.1016/j.arcontrol.2015.03.001. [CrossRef] [Google Scholar]
  4. Vidosav Majstorovic, Vladimir Simeunovic, Zarko Miskovic, Radivoje Mitrovic, Dragan Stosic, Sonja Dimitrijevic, Smart Manufacturing as a framework for Smart Mining, Procedia CIRP 104 (2021) 188–193. www.doi.10.1016/j.procir.2021.11.032. [CrossRef] [Google Scholar]
  5. N., N., A Brief History of ERP – since 1960 and the future of ERP, available at:, accessed: Dec. 2021. [Google Scholar]
  6. J. Bendul, H. Blunck, The design space of production planning and control for Industry 4.0, Computers in Industry, Vol. 105, 2019, pp 260-272. [CrossRef] [Google Scholar]
  7. C. A. Hochmuth, C. Bartodziej, C. Schwägler, Industry 4.0 Is your ERP system ready for the digital era? available at:, accessed: Feb. 2020. [Google Scholar]
  8. Frank, A., Dalenogare, L., Ayala, N., (2019) Industry 4.0 technologies: Implementation patterns in manufacturing, International Journal of Production Economics, 210, 15–26. www.doi.10.1016/j.ijpe.2019.01.004. [Google Scholar]
  9. Fallera, C., Feldmüllera, D. (2015) Industry 4.0 Learning Factory for regional SMEs, Procedia CIRP, 32, 88–91. www.doi.10.1016/j.procir.2015.02.117. [CrossRef] [Google Scholar]
  10. Erol, S., Sihn, W. (2017) Intelligent production planning and control in the cloud – towards a scalable software architecture, Procedia CIRP, 62, 571–576. www.doi:10.1016/j.procir.2017.01.003 [CrossRef] [Google Scholar]
  11. Ivanov, D., Sethi, S., Dolgui, A., Sokolov, B. (2018) A survey on control theory applications to operational systems, supply chain management, and Industry 4.0, Annual Reviews in Control, 46, 134–147. www.doi:10.1016/j.arcontrol.2018.10.014. [CrossRef] [Google Scholar]
  12. Xua, D. L., Xu, L. E., Lia, L. (2018) Industry 4.0: state of the art and future trends, International Journal of Production Research, 56 (8) 2941–2962. [CrossRef] [Google Scholar]
  13. N., N., ERP and Industry 4.0,, Accessed of November 2021). [Google Scholar]
  14. Olson, D., et al., Open source ERP business model framework, Robotics and Computer– Integrated Manufacturing 50 (2018), 30–36. https://doi:org/10.1016/j.rcim.2015.09.007. [CrossRef] [Google Scholar]
  15. Simeunovic, V., et al., Development of Industry 4.0 Model for Open Pit Coal Mine (in Serbian), 26th YU INFO conference, Procedia YU INFO 26 (2020), 279-284. [Google Scholar]
  16. Stosic, D. et al., Monitoring feeding fuel, lubricant and technical fluid in open-pit coal mine supported by modern ICT (in Serbian), 25th conference, Procedia YU INFO 25 (2019), 170-175, [Google Scholar]
  17. Cınar, Z.M.; Abdussalam Nuhu, A.; Zeeshan, Q.; Korhan, O.; Asmael, M.; Safaei, B. Machine Learning in Predictive Maintenance towards Sustainable Smart Manufacturing in Industry 4.0. Sustainability 2020, 12, 8211. [CrossRef] [Google Scholar]
  18. Kim, S.; Choi, J.-H.; Kim, N.H. Challenges and Opportunities of System-Level Prognostics. Sensors 2021, 21, 7655. [CrossRef] [Google Scholar]
  19. Ebru Turanoglu Bekar, Per Nyqvist, Anders Skoogh, An intelligent approach for data preprocessing and analysis in predictive maintenance with an industrial case study, Advances in Mechanical Engineering, 2020, Vol. 12(5) 1–14, [Google Scholar]
  20. N. Kolokas, T. Vafeiadis, D. Ioannidis and D. Tzovaras, “Forecasting faults of industrial equipment using machine learning classifiers,” 2018 Innovations in Intelligent Systems and Applications (INISTA), 2018, pp. 1-6, www.doi:10.1109/INISTA.2018.8466309. [Google Scholar]
  21. Weidong Li, Yuchen Liang, Sheng Wang, Data Driven Smart Manufacturing Technologies and Applications, Book, Springer, 2021. [Google Scholar]
  22. Fadi Assad, Sergey Konstantinov, Hazem Nureldin, Mohammed Waseem, Emma Rushforth, Bilal Ahmad, Robert Harrison, Maintenance and digital health control in smart manufacturing based on condition monitoring, 8th CIRP Conference of Assembly Technology and Systems, Procedia CIRP 97 (2019) 142–147. [Google Scholar]
  23. M. Paolanti, L. Romeo, A. Felicetti, A. Mancini, E. Frontoni and J. Loncarski, “Machine Learning approach for Predictive Maintenance in Industry 4.0,” 2018 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA), 2018, pp. 1-6, www.doi:10.1109/MESA.2018.8449150. [Google Scholar]
  24. B. Chen, J. Wan, L. Shu, P. Li, M. Mukherjee and B. Yin, “Smart Factory of Industry 4.0: Key Technologies, Application Case, and Challenges,” in IEEE Access, vol. 6, pp. 65056519, 2018, www.doi:10.1109/ACCESS.2017.2783682. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.