Open Access
MATEC Web Conf.
Volume 367, 2022
21st Conference on Power System Engineering
Article Number 00018
Number of page(s) 18
Published online 14 October 2022
  1. Li, Mao, Hongjie Yan a Jiemin Zhou. Numerical Simulation and Optimization of Flow Field in the SCR Denitrification System. In: 2009 International Conference on Energy and Environment Technology [online]. IEEE, 2009, s. 415-418 [cit. 2022-04-26]. ISBN 978-0-7695-3819-8. Available from: doi:10.1109/ICEET.2009.565 [Google Scholar]
  2. Mi, Jia, Dan A. Pitsko a Tim Haskew. CFD Applications on Selective Catalytic NOx Reduction (SCR) Systems. In: Volume 1: Fora, Parts A, B, C, and D [online]. ASMEDC, 2003, s. 2139-2146 [cit. 2022-04-26]. ISBN 0-7918-3696-7. Available from: doi:10.1115/FEDSM2003-45436 [CrossRef] [Google Scholar]
  3. Hong, Wen Peng, Hao Shu Ding a Yue Huang. Numerical Simulation and Optimization of the Flow Field in the SCR System. Advanced Materials Research [online]. 2013, 860-863, 1464-1469 [cit. 2022-04-26]. ISSN 1662-8985. Available from: doi:10.4028/ [CrossRef] [Google Scholar]
  4. Mehdi, Ghazanfar, Song Zhou, Yuanqing Zhu, Shafquat Hussain a Arif Hussain. A CFD analysis of static mixer to study its impacts on SCR performance in marine diesel engine. In: 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET) [online]. IEEE, 2019, s. 1-6 [cit. 2022-04-26]. ISBN 978-1-5386-9509-8. Available from: doi:10.1109/ICOMET.2019.8673421 [Google Scholar]
  5. Tan, Ligang, Pengfei Feng, Shubao Yang, Yage Guo, Shaochun Liu a Ziwen Li. CFD studies on effects of SCR mixers on the performance of urea conversion and mixing of the reducing agent. Chemical Engineering and Processing Process Intensification [online]. 2018, 123, 82-88 [cit. 2022-04-26]. ISSN 02552701. Available from: doi:10.1016/j.cep.2017.11.003 [CrossRef] [Google Scholar]
  6. Xu, Zhengxin, Jingping Liu a Jianqin Fu. Experimental investigation on the urea injection and mixing module for improving the performance of urea-SCR in diesel engines. The Canadian Journal of Chemical Engineering [online]. 2018, 96(6), 1417-1429 [cit. 2022-04-26]. ISSN 00084034. Available from: doi:10.1002/cjce.23082 [CrossRef] [Google Scholar]
  7. Qu, Litao, Chao Li, Fengyuan He, Xiaohui Qi, Honghai Yu, Jia Du a Dexin Wang. Study on Flow Field Optimization of SCR Denitrification Reactor Based on CFD Numerical Simulation Technology. IOP Conference Series: Earth and Environmental Science [online]. 2019, 242 [cit. 2022-04-26]. ISSN 1755-1315. Available from: doi:10.1088/1755-1315/242/4/042009 [Google Scholar]
  8. Mehdi, Ghazanfar, Song Zhou, Yuanqing Zhu, Ahmer Shah a Kishore Chand. Numerical Investigation of SCR Mixer Design Optimization for Improved Performance. Processes [online]. 2019, 7(3) [cit. 2022-04-26]. ISSN 2227-9717. Available from: doi:10.3390/pr7030168 [CrossRef] [Google Scholar]
  9. Kurzydym, Damian, Adam Klimanek a Zbigniew Żmudka. Experimental research and CFD analysis of flow parameters in a SCR system for the original part and WALKER’s replacement. Combustion Engines [online]. 2019, 179(4), 13-20 [cit. 2022-04-26]. ISSN 2300-9896. Available from: doi:10.19206/CE-2019-402 [CrossRef] [Google Scholar]
  10. Holtz, Dorian, Conrad Gierow, Robert Bank, Dirk Kadau a Flavio Soppelsa. CFD simulation of particle deposition in exhaust gas treatment systems. SIEBENPFEIFFER, Wolfgang, ed. Heavy-Duty-, Onund Off-Highway-Motoren 2019 [online]. Wiesbaden: Springer Fachmedien Wiesbaden, 2020, s. 69-82 [cit. 2022-04-26]. Proceedings. ISBN 978-3-658-31370-8. Available from: doi:10.1007/978-3-65831371-5_6 [CrossRef] [Google Scholar]
  11. Wardana, Muhammad Khristamto Aditya, G. M. Hasan Shahariar, Kwangchul Oh a Ocktaeck Lim. Ammonia Uniformity to Predict NOx Reduction Efficiency in an SCR System. International Journal of Automotive Technology [online]. 2019, 20(2), 313-325 [cit. 2022-04-26]. ISSN 1229-9138. Available from: doi:10.1007/s12239-019-0031-x [CrossRef] [Google Scholar]
  12. Luo, Zhaoyu, Parvez Sukheswalla, Scott A. Drennan, Mingjie Wang a P. K. Senecal. 3D Numerical Simulations of Selective Catalytic Reduction of NOx With Detailed Surface Chemistry. In: Volume 2: Emissions Control Systems; Instrumentation, Controls, and Hybrids; Numerical Simulation; Engine Design and Mechanical Development [online]. American Society of Mechanical Engineers, 2017, s. [cit. 2022-04-26]. ISBN 978-0-7918-5832-5. Available from: doi:10.1115/ICEF2017-3658 [Google Scholar]
  13. Lee, Changhee. Numerical and experimental investigation of evaporation and mixture uniformity of urea–water solution in selective catalytic reduction system. Transportation Research Part D: Transport and Environment [online]. 2018, 60, 210-224 [cit. 2022-04-26]. ISSN 13619209. Available from: doi:10.1016/j.trd.2017.04.015 [CrossRef] [Google Scholar]
  14. Zhang, Chaofeng, Chuan Sun, Meiping Wu a Kai Lu. Optimisation design of SCR mixer for improving deposit performance at low temperatures. Fuel [online]. 2019, 237, 465-474 [cit. 2022-04-26]. ISSN 00162361. Available from: doi:10.1016/j.fuel.2018.10.025 [CrossRef] [Google Scholar]
  15. Gao, Xiang, Ben Wang, Xudong Yuan, Siyuan Lei, Qinggong Qu, Chuan Ma a Lushi Sun. Optimal design of selective catalyst reduction denitrification system using numerical simulation. Journal of Environmental Management [online]. 2019, 231, 909-918 [cit. 2022-04-26]. ISSN 03014797. Available from: doi:10.1016/j.jenvman.2018.10.060 [CrossRef] [Google Scholar]
  16. NOVÁK, Martin a Richard Matas. Numerical simulation of flue gas in selective catalytic reduction system [online]. In: . s. 040003[cit. 2022-04-26]. Available from: doi:10.1063/5.0041560 [Google Scholar]
  17. BLEJCHAŘ, Tomáš. Turbulence modelového proudění CFX: učební text. Vyd. 1. Ostrava: Vysoká škola báňská Technická univerzita Ostrava, 2012. ISBN 978-80-248-2606-6. [Google Scholar]
  18. KOZUBKOVÁ, Milada. Modelování proudění tekutin FLUENT, CFX [online]. 1. vyd. Ostrava: Vysoká škola báňská Technická univerzita, 2008 [cit. 2022-04-26]. ISBN 978-80-248-1913-6. [Google Scholar]
  19. Pinkus, Oscar a Beno Sternlicht. Theory of hydrodynamic lubrication. New York: McGraw-Hill, 1961. [Google Scholar]
  20. ANSYS Fluent User’s Guide 2021 R1 [PDF]. 2021. U.S.A., 2021 [cit. 2022-04-26]. [Google Scholar]
  21. Menter, F. Zonal Two Equation k-w Turbulence Models For Aerodynamic Flows. In: 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference [online]. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1993, s. [cit. 2022-04-26]. Available from: doi:10.2514/6.1993-2906 [Google Scholar]
  22. Weltens, Herman, Harald Bressler, Frank Terres, Hubert Neumaier a Detlev Rammoser. Optimisation of Catalytic Converter Gas Flow Distribution by CFD Prediction [online]. In: . s. [cit. 2021-12-20]. Available from: doi:10.4271/930780 [Google Scholar]
  23. Sun, Ke, Haiyang Zhao, Kui Zhao, Da Li a Shuzhan Bai. Optimization of SCR inflow uniformity based on CFD simulation. Open Physics [online]. 2020, 18(1), 1168-1177 [cit. 2021-12-20]. ISSN 2391-5471. Available from: doi:10.1515/phys-2020-0221 [CrossRef] [Google Scholar]
  24. Bressler, H., D. Rammoser, H. Neumaier a F. Terres. Experimental and Predictive Investigation of a Close Coupled Catalytic Converter with Pulsating Flow [online]. In: . s. [cit. 2021-12-20]. Available from: doi:10.4271/960564 [Google Scholar]
  25. Lu, Kai, Dewen Liu, Yan Wu, Shusen Liu a Shuzhan Bai. A study on the high-efficiency mixer of the SCR system. Mechanics & Industry [online]. 2021, 22 [cit. 2021-12-20]. ISSN 2257-7777. Available from: doi:10.1051/meca/2020101 [CrossRef] [EDP Sciences] [Google Scholar]
  26. Mckinley, Thomas L., Andrew G. Alleyne a Chia-Fon Lee. Mixture Non-Uniformity in SCR Systems: Modeling and Uniformity Index Requirements for Steady-State and Transient Operation. SAE International Journal of Fuels and Lubricants [online]. 2010, 3(1), 486-499 [cit. 2021-12-20]. ISSN 1946-3960. Available from: doi:10.4271/2010-01-0883 [CrossRef] [Google Scholar]
  27. Capetillo, Azael J., Fernando Ibarra, Dominik Stepniewski a Jo Vankan. Multiphase Modelling of SCR Systems: Using the Taguchi Method for Mixer Optimisation. SAE International Journal of Engines [online]. 2017, 10(1), 61-71 [cit. 2021-12-20]. ISSN 1946-3944. Available from: doi:10.4271/2017-26-0113 [CrossRef] [Google Scholar]
  28. Vedagiri, Praveena, Leenus Jesu Martin a Edwin Geo Varuvel. Characterization of urea SCR using Taguchi technique and computational methods. Environmental Science and Pollution Research [online]. 2021, 28(10), 11988-11999 [cit. 2021-12-03]. ISSN 0944-1344. Available from: doi:10.1007/s11356-020-08743-y [CrossRef] [Google Scholar]
  29. Girard, James W., Figen Lacin, Charles J. Hass a Joseph Hodonsky. Flow Uniformity Optimization for Diesel Aftertreatment Systems [online]. In: . s. [cit. 2021-12-20]. Available from: doi:10.4271/2006-01-1092 [Google Scholar]
  30. Johansson, Åsa, Ulf Wallin, Mikael Karlsson, Annika Isaksson a Phillip Bush. Investigation on Uniformity Indices Used for Diesel Exhaust Aftertreatment Systems [online]. In: . s. [cit. 202112-20]. Available from: doi:10.4271/2008-01-0613 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.