Open Access
Issue
MATEC Web Conf.
Volume 367, 2022
21st Conference on Power System Engineering
Article Number 00016
Number of page(s) 18
DOI https://doi.org/10.1051/matecconf/202236700016
Published online 14 October 2022
  1. T. Adefarati a R. Bansal, “Energizing Renewable Energy Systems and Distribution Generation”, v Pathways to a Smarter Power System, 1. editor, Yildiz Technical University, Turkey: Academic Press (2019), https://doi.org/10.1016/C2017-0-03015-X [Google Scholar]
  2. A. Razak, Industrial Gas Turbines, UK: Woodhead Publishing (2007), ISBN 978-184569-205-6 [Google Scholar]
  3. L. Liu, “Supercritical Carbon Dioxide(s-CO2) Power Cycle for Waste Heat Recovery: A Review from Thermodynamic Perspective”, Processes, vol. 8, n. 1461 (2020), https://doi.org/10.3390/pr8111461 [Google Scholar]
  4. I. Johnson, “Waste Heat Recovery. Technology and Opportunities in U.S. Industry”, U.S. Department of Energy (2008), https://doi.org/10.2172/1218716 [Google Scholar]
  5. H. Jouhara, Waste heat recovery technologies and applications, 6 editor, London: Thermal Science and Engineering Progress, pp. 268-289 (2018), https://doi.org/10.1016/j.tsep.2018.04.017 [Google Scholar]
  6. P. Boruta, T. Bujok, Ł. Mika a K. Sztekler, “Analysis of Designs of Heat Exchangers Used in Adsorption Chillers”, Energies, vol. 14, n. 23, p. 8038 (2021), DOI:10.3390/en14238038 [Google Scholar]
  7. P. Colonna, “Organic Rankine Cycle Power Systems: From the Concept to Current Technology, Applications, and an Outlook to the Future”, Journal of Engineering for Gas Turbines and Power, vol. 137, n. 10 (2015), https://doi.org/10.1115/1.4029884 [CrossRef] [Google Scholar]
  8. S. Quoilin, “Techno-economic survey of Organic Rankine Cycle (ORC) systems”, Renewable and Sustainable Energy Reviews, vol. 22 (2013), https://doi.org/10.1016/j.rser.2013.01.028 [Google Scholar]
  9. K. Brun, Fundamentals and Applications of Supercritical Carbon Dioxide (sCO2) Based Power Cycles, Sawston, UK: Woodhead Publishing (2017), ISBN 978-0-08100804-1 [Google Scholar]
  10. M. Marchionni, “Review of supercritical carbon dioxide (sCO2) technologies for highgrade waste heat to power conversion”, SN Applied Sciences, n. 611 (2020), https://doi.org/10.1007/s42452-020-2116-6 [Google Scholar]
  11. P. Wu, “A review of research and development of supercritical carbon dioxide Brayton cycle technology in nuclear engineering applications”, Nuclear Engineering and Design, vol. 368, (2020), https://doi.org/10.1016/j.nucengdes.2020.110767 [Google Scholar]
  12. D. Duda, T. Jelínek, P. Milčák, M. Němec, V. Uruba, V. Yanovych a P. Žitek, “Experimental Investigation of the Unsteady Stator/Rotor Wake Characteristics Downstream of an Axial Air Turbine”, International Journal of Turbomachinery, Propulsion and Power, vol. 6, n. 3, p. 22 (2021), https://doi.org/10.3390/ijtpp6030022 [CrossRef] [Google Scholar]
  13. D. Duda, J. Bém, V. Yanovych, P. Pavlíček a V. Uruba, “Secondary flow of second kind in a short channel observed by PIV”, European Journal of Mechanics, B/Fluids, vol. 79, pp. 444-453 (2020), https://doi.org/10.1016/j.euromechflu.2019.10.005 [CrossRef] [Google Scholar]
  14. D. Duda, V. Yanovych a V. Uruba, “An experimental study of turbulent mixing in channel flow past a grid”, Processes, vol. 8, n. 11, pp. 1-17 (2020), https://doi.org/10.3390/pr8111355 [CrossRef] [Google Scholar]
  15. V. Yanovych, D. Duda, V. Uruba a P. Antoš, “Anisotropy of turbulent flow behind an asymmetric airfoil”, SN Appl. Sci., vol. 3, p. 885 (2021), DOI:10.1007/s42452-02104872-2 [CrossRef] [Google Scholar]
  16. D. Duda, V. Yanovych, V. Tsymbalyuk a V. Uruba, “Effect of Manufacturing Inaccuracies on the Wake Past Asymmetric Airfoil by PIV”, Energies, vol. 15, n. 3, p. 1227 (2022), https://doi.org/10.3390/en15031227 [CrossRef] [Google Scholar]
  17. K. Darvish, “Selection of Optimum Working Fluid for Organic Rankine Cycles by Exergy and Exergy-Economic Analyses”, Sustainability, vol. 7, n. 11, pp. 15362-15383 (2015), https://doi.org/10.3390/su71115362 [CrossRef] [Google Scholar]
  18. S. Quoilin, Experimental Study and Modeling of a Low Temperature Rankine Cycle for Small Scale Cogeneration, Lutych: University of Liege Aerospace and mechanical engineering (2007) [Google Scholar]
  19. White, Martin T. Review of supercritical CO2 technologies and systems for power generation. Applied Thermal Engineering., vol. 185 (2021), https://doi.org/10.1016/j.applthermaleng.2020.116447 [CrossRef] [Google Scholar]
  20. E. Macchi a M. Astolfi, Organic Rankine Cycle (ORC) Power Systems, 1 editor, Milano: Woodhead Publishing, p. 698 (2016), ISBN 9780081005101 [Google Scholar]
  21. T. Tartière, “A World Overview of the Organic Rankine Cycle Market”, Energy Procedia 4th International Seminar on ORC Power Systems, vol. 129 (2017), https://doi.org/10.1016/j.egypro.2017.09.159 [Google Scholar]
  22. Y. P. Wang, “Performance Analysis of Near-Critical and Subcritical Organic Rankine Cycle”, Applied Mechanics and Materials, vol. 1, site 2448-453 (2013), https://doi.org/10.4028/www.scientific.net/AMM.448-453.3270 [Google Scholar]
  23. L. Pan, “Performance analysis in near-critical conditions of Organic Rankine Cycle”, 7th Biennial International Workshop “Advances in Energy Studies”, vol. 37, n. 1, (2012), https://doi.org/10.1016/j.energy.2011.11.033 [Google Scholar]
  24. A. M. Ahmed a A. R. Imre, “The effect of recuperator on the efficiency of ORC and TFC with very dry working fluid”, MATEC Web of Conferences, vol. 345, p. 00012 (2021), https://doi.org/10.1051/matecconf/202134500012 [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.