Open Access
MATEC Web Conf.
Volume 364, 2022
International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2022)
Article Number 05014
Number of page(s) 6
Section Developments in Concrete Material Technology, Assessment and Processing
Published online 30 September 2022
  1. G. Habert et al., “Environmental impacts and decarbonization strategies in the cement and concrete industries, ” Nat. Rev. Earth Environ., vol. 1, no. 11, pp. 559–573, 2020. [CrossRef] [Google Scholar]
  2. K. L. Scrivener, V. M. John, and E. M. Gartner, “Eco-efficient cements: Potential economically viable solutions for a low-CO 2 cement-based materials industry, ” Cem. Concr. Res., vol. 114, pp. 2–26, 2018. [Google Scholar]
  3. R. Fernandez, F. Martirena, and K. L. Scrivener, “The origin of the pozzolanic activity of calcined clay minerals: A comparison between kaolinite, illite and montmorillonite, ” Cem. Concr. Res., vol. 41, no. 1, pp. 113–122, Jan. 2011. [Google Scholar]
  4. G. Habert, N. Choupay, J. M. Montel, D. Guillaume, and G. Escadeillas, “Effects of the secondary minerals of the natural pozzolans on their pozzolanic activity, ” Cem. Concr. Res., vol. 38, no. 7, pp. 963–975, 2008. [Google Scholar]
  5. K. Scrivener, F. Martirena, S. Bishnoi, and S. Maity, “Calcined clay limestone cements (LC3), ” Cem. Concr. Res., vol. 114, no. March 2017, pp. 49–56, 2018. [Google Scholar]
  6. ASTM International, “ASTM C188-17, Standard Test Method for Density of Hydraulic Cement, ” 2017. [Google Scholar]
  7. K. Scrivener, R. Snellings, and B. Lothenbach, A practical guide to microstructural analysis of cementitious materials, 1st ed. Boca Raton: CRC Press, 2016. [Google Scholar]
  8. European Committee for Standardization (CEN), “EN 196-1:2016 Methods of testing cement Part 1: Determination of strength.” [Google Scholar]
  9. International Organization for Standardization, “ISO 14044:2006: Environmental ManagementLife Cycle Assessment—Requirements and Guidelines, ” Geneva, Switzerland, 2016. [Google Scholar]
  10. University of Leiden, “Institute of Environmental Sciences.” CML-IA, 2013. [Google Scholar]
  11. F. N. Stafford, A. C. Dias, L. Arroja, J. A. Labrincha, and D. Hotza, “Life cycle assessment of the production of Portland cement: A Southern Europe case study, ” J. Clean. Prod., vol. 126, pp. 159–165, 2016. [CrossRef] [Google Scholar]
  12. M. U. Hossain, C. S. Poon, I. M. C. Lo, and J. C. P. Cheng, “Comparative LCA on using waste materials in the cement industry: A Hong Kong case study, ” Resour. Conserv. Recycl., vol. 120, pp. 199–208, 2017. [CrossRef] [Google Scholar]
  13. S. A. Bernal et al., “Characterization of supplementary cementitious materials by thermal analysis, ” Mater. Struct. Constr., vol. 50, no. 1, 2017. [Google Scholar]
  14. N. S. Msinjili, G. J. G. Gluth, P. Sturm, N. Vogler, and H. C. Kühne, “Comparison of calcined illitic clays (brick clays) and low-grade kaolinitic clays as supplementary cementitious materials, ” Mater. Struct. Constr., vol. 52, no. 5, 2019. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.