Open Access
MATEC Web Conf.
Volume 364, 2022
International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2022)
Article Number 04018
Number of page(s) 8
Section Concrete Repair, Rehabilitation and Retrofitting - Structural Repairs and Strengthening
Published online 30 September 2022
  1. C. Andrade. Initial steps of corrosion and oxide characteristics. Str. Conc. 2020; 21: 1710–1719. [CrossRef] [Google Scholar]
  2. C. Andrade, D. Izquierdo. Propagation period modeling and limit state of degradation. Str. Conc. 2020; 21: 1720–1731. [CrossRef] [Google Scholar]
  3. P. Michael Enright, Dan M. Frangopol. Probabilistic analysis of resistance degradation of reinforced concrete bridge beams under corrosion. Eng. str. 20.11 (1998): 960-971. [CrossRef] [Google Scholar]
  4. P. Zampieri, M. A. Zanini, F. Faleschini. Derivation of analytical seismic fragility functions for common masonry bridge types: methodology and application to real cases. Engineering Failure Analysis, 2016, Vol. 68, pp. 275-291, ISSN: 1350-6307, doi: 10.1016/j.engfailanal.2016.05.031. [CrossRef] [Google Scholar]
  5. M. A. Zanini, F. Faleschini, C. Pellegrino. Bridge residual service-life prediction through Bayesian visual inspection and data updating. Structure and Infrastructure Engineering, 2016, Vol. 13, N. 7, pp. 906-917, ISSN: 1573-2479, doi: 10.1080/15732479.2016.1225311. [Google Scholar]
  6. W. G. Buttlar, A. Chabot, E. V. Dave, C. Petit, G. Tebaldi. Mechanisms of Cracking and Debonding in Asphalt and Composite Pavements. State-of-the-Art of the RILEM TC 241-MCD; 2018, Springer ISBN 978-3-319-76849-6. [Google Scholar]
  7. A. Wargo, R. Y. Kim, W. Buttlar, B. Hill, G. Paulino, R. Roncella, A. Montepara, C. Petit, I. O. Pop, M. E. Kutay, E. Romeo, G. Tebaldi. Digital image correlation techniques to investigate strain fields and cracking phenomena in asphalt materials. Materials and Structures, 2014, [Google Scholar]
  8. M. M. Messore, L. Capacci, F. Biondini. Life-cycle cost-based risk assessment of aging bridge networks. Structure and Infrastructure Engineering, 2020, DOI: 10.1080/15732479.2020.1845752. [Google Scholar]
  9. B. Belletti, F. Vecchi, C. Bandini, C. Andrade, J. S. Montero. Numerical evaluation of the corrosion effects in prestressed concrete beams without shear reinforcement. Str. Conc. 2020; 21: 1794–1809. [CrossRef] [Google Scholar]
  10. M. A. Zanini, F. Faleschini, J. R. Casas Rius. Stateof-research on performance indicators for bridge quality control and management. Frontiers in built environment, 2019, Vol. 5, pp. 1-20. ISSN 2297-3362, doi: 10.3389/fbuil.2019.00022. [CrossRef] [Google Scholar]
  11. S. Campagnari, F. Di Matteo, S. Manzoni, M. Scaccabarozzi, M. Vanali. Estimation of axial load in tie-rods using experimental and operational modal analysis. Journal of Vibration and Acoustics, Transactions of the ASME, 2017. 139 (4), art. no. 041005, DOI: 10.1115/1.4036108. [CrossRef] [Google Scholar]
  12. A. Reggia, A. Morbi, G. A. Plizzari. Experimental study of a reinforced concrete bridge pier strengthened with HPFRC jacketing. Eng. Str., Vol. 210(2020), [CrossRef] [Google Scholar]
  13. fib International Federation for Structural Concrete. Model Code for Concrete Structures 2010. Ernst & Sohn, ISBN 978-3-433-03061-5. 2013, p. 1–434. [Google Scholar]
  14. F. Leonhardt, R. Walther. Wardetiger Trager. Deutscher Ausschuss fur Stahlbeton, Bulletin No. 178, 1966, Wilhelm Ernst und Sohn, Berlin, German. [Google Scholar]
  15. G.N.J. Kani. Basic Facts Concerning Shear Failure. Journal ACI, Vol. 63, June 1966, pp. 675-692. [Google Scholar]
  16. CEN European Committee for Standardization. EN15630-1: Steel for the reinforcement and prestressing of concrete Test methods Part 1: Reinforcing bars, wire rod and wire. Ed. by CEN. Brussels, Belgium, 2019. [Google Scholar]
  17. CEN European Committee for Standardization. EN12390-1: Testing hardened concrete Part 1: Shape, dimensions and other requirements for specimens and moulds. Ed. by CEN. Brussels, Belgium, 2021. [Google Scholar]
  18. CEN European Committee for Standardization. EN12390-2: Testing hardened concrete Part 2: Making and curing specimens for strength tests. Ed. by CEN. Brussels, Belgium, 2019. [Google Scholar]
  19. CEN European Committee for Standardization. EN12390-3: Testing hardened concrete Part 3: Compressive strength of test specimens. Ed. by CEN. Brussels, Belgium, 2019. [Google Scholar]
  20. CEN European Committee for Standardization. EN12390-13: Testing hardened concrete Part 13: Determination of secant modulus of elasticity in compression. Ed. by CEN. Brussels, Belgium, 2021. [Google Scholar]
  21. CEN European Committee for Standardization. EN14651: Test method for metallic fibre concrete measuring the flexural tensile strength (limit of proportionally (LOP), residual). Ed. by CEN. Brussels, Belgium, 2005. [Google Scholar]
  22. ACI American Concrete Institute. ACI 374.2R-13 Guide for Testing Reinforced Concrete Structural Elements under Slowly Applied Simulated Seismic Loads. Ed. by ACI, Farmington Hills, USA, 2013. [Google Scholar]
  23. R. Park. Evaluation of ductility of structures and structural assemblages from laboratory testing. Bulletin of the New Zealand national society for earthquake engineering, Vol. 22, No. 3, 1989. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.