Open Access
MATEC Web Conf.
Volume 364, 2022
International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2022)
Article Number 03008
Number of page(s) 8
Section Condition Assessment of Concrete Structures - Non-Destructive Measurement and Assessment Techniques
Published online 30 September 2022
  1. IAEA-International Atomic Energy Agency, Guidebook on non-destructiv testing of concrete structures, TRAINING COURSE SERIES No. 17, 17th edn, VIENNA, (2002). [Google Scholar]
  2. Bergmeister, K. and Rostan, S., Monitoring and safety evaluation of existing concrete structures: bulletin 22. state-of-the-art report. Bulletin 22 (2003). [Google Scholar]
  4. Gucunski, N., Imani, A., Romero, F., Nazarian, S., Yuan, D., Wiggenhauser, H., Shokouhi, P., Taffe, A., Kutrubes, D., Nondestructive Testing to Identify Concrete Bridge Deck Deterioration, REPORT S2R06A-RR-1, Transportation Research Board, Washington, D.C. (2012). [CrossRef] [Google Scholar]
  5. Beushausen, H. and Fernandez Luco, L. (eds), Performance-Based Specifications and Control of Concrete Durability: State-of-the-Art Report RILEM TC 230-PSC, 1st edn, Springer, Dordrecht (2015). [Google Scholar]
  6. Feistkorn, S., Taffe, A., Methods to Assess the Quality of Non-Destructive Testing in Civil Engineering Using POD and GUM for Static Calculations of Existing Structures. Materials Testing, Band 56 (7-8), 611–616 (2014). [CrossRef] [Google Scholar]
  7. Feistkorn, S., Rebar detection — POD approach to determine the reliability of GPR systems and to quantify the influence of different material parameters, in The proceedings of 2016 16th International Conference on Ground Penetrating Radar (GPR): 13-16 June 2016, The Hong Kong Polytechnic University, Department of Land Surveying and Geo-Informatics. 2016 16th International Conference on Ground Penetrating Radar (GPR), Hong Kong, Hong Kong. IEEE, Piscataway, NJ, pp. 1–6 (2016). [Google Scholar]
  8. Feistkorn, S., Algernon, D., Scherrer, M., POD and GUM Universal Methods for Making Safety Measurable. Journal of Safety Studies, 2 (2), 56 (2016). [CrossRef] [Google Scholar]
  9. Keßler, S., Probabilistic corrosion condition assessment of a tunnel structure. Structural Concrete, 21 (4), 1345–1355 (2020). [CrossRef] [Google Scholar]
  10. JCGM Joint Committee for Guides in Metrology, Evaluation of measurement data — Guide to the expression of uncertainty in measurement (2008). [Google Scholar]
  11. JCGM Joint Committee for Guides in Metrology, Evaluation of measurement data Supplement 1 to the GUM — Propagation of distributions using a Monte Carlo method (2008). [Google Scholar]
  12. Braml, T., Taffe, A., Feistkorn, S., Wurzer, O., Assessment of Existing Structures using Probabilistic Analysis Methods in Combination with Nondestructive Testing Methods. Structural Engineering International, 23 (4), 376–385 (2013). [CrossRef] [Google Scholar]
  13. Küttenbaum, S., Maack, S., Taffe, A., Structural safety referring to ultrasound on concrete bridges. Betonund Stahlbetonbau, 113 (4), 7–13 (2018). [CrossRef] [Google Scholar]
  14. Küttenbaum, S., Feistkorn, S., Braml, T., Taffe, A., Maack, S., Methods to Quantify the Utility of NDT in Bridge Reassessment. Lecture Notes in Civil Engineering, Springer International Publishing (2021). [Google Scholar]
  15. Küttenbaum, S., Braml, T., Taffe, A., Keßler, S., Maack, S., Reliability assessment of existing structures using results of nondestructive testing. Structural Concrete, 23, 403 (2021). [Google Scholar]
  16. Küttenbaum, S., Braml, T., Taffe, A., Maack, S., Towards NDT-supported decisions on the reliability of existing bridges, in ICOSSAR 2021-2022: 13th Internation Conference on Structural Safety & Reliabilty. ICOSSAR 2021-2022, 13-17 September 2022, Tongji University, Shanghai, China, pp. 1–10 (2022). (accepted) [Google Scholar]
  17. Matthews, S., Bigaj-van Vliet, A., Walraven, J., Mancini, G., Dieteren, G., fib Model Code 2020: Towards a general code for both new and existing concrete structures. Structural Concrete, 19 (4), 969–979 (2018). [CrossRef] [Google Scholar]
  18. Matthews, S., Mancini, G., Alexander, M.G., Beushausen, H., Dehn, F., Moyo, P., Forensic engineering fib MC 2020 and existing structures. MATEC Web Conf., 199, 1–14 (2018). [Google Scholar]
  19. S. Maack, S. Küttenbaum, N. Epple, M. Aligholizadeh, Die Ultraschall‐Echomethode – von der Messung zur bautechnischen Kenngröße: Studie zur Leistungsfähigkeit der Messmethode am Referenzmaterial Polyamid und an Beton. Betonund Stahlbetonbau, 22 (6), 270 (2021). (German) [Google Scholar]
  20. S. Maack, S. Küttenbaum, B. Bühling, E. Niederleithinger, Low frequency ultrasonic dataset for pulse echo object detection in an isotropic homogeneous medium as reference for heterogeneous materials in civil engineering, Data in Brief, 42, 108235 (2022). [CrossRef] [Google Scholar]
  21. Krause, M., Mayer, K., Friese, M., Milmann, B., Mielentz, F., Ballier, G., Progress in ultrasonic tendon duct imaging. European Journal of Environmental and Civil Engineering, 15 (4), 461–485 (2011). [CrossRef] [Google Scholar]
  22. Reinhardt, H.W., Zerstörungsfreie Strukturbestimmung von Betonbauteilen mit akustischen und elektromagnetischen Echo-Verfahren: Abschlussbericht Forschergruppe FOR384, Anhang Liste der erstellten Prüfkörper (2007). (German) [Google Scholar]
  23. DIN 2010, DIN EN 1330-04:2010-05, Materialprüfnormen für metallische Werkstoffe (engl.: Non-destructive testing – Terminology Part 4: Terms used in ultrasonic testing; Trilingual version), Deutsches Institut für Normung e.V., Berlin (2010). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.