Open Access
MATEC Web Conf.
Volume 364, 2022
International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2022)
Article Number 03005
Number of page(s) 8
Section Condition Assessment of Concrete Structures - Degradation and Condition Assessment
Published online 30 September 2022
  1. A. Zahedi, L. F M Sanchez, and M. Noël, Constr. Build. Mater., 323, no. December 2021, (2022) [Google Scholar]
  2. Bérubé, N. Snaoui, B. Bissonnette, and B. Fournier, Outil d’evaluation et de gestion des ouvrages d’art affectes de reactions alcalis-silice (RAS). (2005) [Google Scholar]
  3. RILEM technical committee 259-ISR, Diagnosis & Prognosis of AAR Affected Structures. Springer Nature Switzerland AG. (2021) [Google Scholar]
  4. L. F. M. Sanchez, B. Fournier, M. Jolin, D. Mitchell, and J. Bastien. Cem. Concr. Res., 93, pp. 17–31, (2017) [CrossRef] [Google Scholar]
  5. C. Rogers, Cem. Concr. Compos., 15, pp. 13–19, (1993) [CrossRef] [Google Scholar]
  6. M.-A. Bérubé and B. Fournier, Can. J. Civ. Eng., 14, pp. 372–380, (1987) [CrossRef] [Google Scholar]
  7. L. F. M. Sanchez, B. Fournier, D. Mitchell, and J. Bastien. Constr. Build. Mater., 236, p. 117554, (2020) [CrossRef] [Google Scholar]
  8. K. K. Mermigas. Con. of the Transp. Assoc. of Canada, pp. 1-18. (2018) [Google Scholar]
  9. L. F. M. Sanchez, T. Drimalas, B. Fournier, D. Mitchell, and J. Bastien. Cem. Concr. Res., 107, no. February, pp. 284–303, (2018) [CrossRef] [Google Scholar]
  10. B. Diao, Y. Sun, S. Cheng, and Y. Ye. J. Cold Reg. Eng., 25, 1, pp. 37–52, (2011) [CrossRef] [Google Scholar]
  11. Y. Wang et al., Constr. Build. Mater. 209, pp. 566–576, (2019) [CrossRef] [Google Scholar]
  12. D. K. Panesar and G. Ching. Int. J. Mech. Sci., 144, pp. 865–876, (2018) [CrossRef] [Google Scholar]
  13. B. Godart, P. Fasseu, and M. Michel, The Ninth International Conference On Alkali-Aggregate Reaction In Concrete, pp. 368–375. (1992) [Google Scholar]
  14. ACI 228.2R. Report on Nondestructive Test Methods for Evaluation of Concrete in Structures, Am. Concr. Inst. (2013) [Google Scholar]
  15. P. Meynink and A. Samarin, RILEM Symp. Proc. On Quality Control of Concrete Structures, pp. 127–134. (1979) [Google Scholar]
  16. ASTM C 805-02. Standard Test Method for Rebound Number of Hardened Concrete. United States Am Soc Test Mater (2002) [Google Scholar]
  17. ASTM C597. Standard Test Method for Pulse Velocity Through Concrete. United States Am Soc Test Mater. (2016) [Google Scholar]
  18. IS 13311. Method of Non-destructive testing of concret, Part 1: Ultrasonic pulse velocity. Bur. Indian Stds., pp. 1–7, (1992) [Google Scholar]
  19. R. Polder et al.. RILEM TC 154-EMC : electrochemical techniques for measuring metallic corrosion: Test methods for on site measurement of resistivity of concrete. 33, pp. 603–611, (2001) [Google Scholar]
  20. AASHTO T 358-15. Standard Method of Test for Surface Resistivity Indication of Concrete’s Ability to Resist Chloride Ion Penetration. (2015). [Google Scholar]
  21. B. Fournier, M.-A. Bérubé, K. J. Folliard, and M. Thomas. Report on the Diagnosis, Prognosis, and mitigaton of Alkali-Silica Reaction (ASR) in Transportation Structures. (2010). [Google Scholar]
  22. M. T. Cristofaro, S. Viti, and M. Tanganelli. J. Build. Eng., 27, p. 100962. (2020) [CrossRef] [Google Scholar]
  23. K. Ramyar, P. Kol, Cement Concr. World 2 pp. 46–54, (in Turkish) (1996) [Google Scholar]
  24. G.F. Kheder, Mater. Struct. 32 pp. 410–417 (1999) [CrossRef] [Google Scholar]
  25. G. Menditto, S. Bufarini, V. D’Aria, M. Massaccesi, : Concreto, 57, pp. 84–89, (in Italian) (2004). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.