Open Access
Issue
MATEC Web Conf.
Volume 364, 2022
International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2022)
Article Number 02007
Number of page(s) 8
Section Concrete Durability Aspects - Concrete Durability: Innovative Materials and Influences of Material Composition
DOI https://doi.org/10.1051/matecconf/202236402007
Published online 30 September 2022
  1. J. Wei, B. Gencturk, A. Jain, & M. Hanifehzadeh, Mitigating alkali-silica reaction induced concrete degradation through cement substitution by metakaolin and bentonite. Appl. Clay Sci., 182, (2019). [Google Scholar]
  2. M. Thomas, The effect of supplementary cementing materials on alkali-silica reaction: A review. Cem. Conc. Res., 41(12), 1224–1231. (2011). [CrossRef] [Google Scholar]
  3. M. J. Tapas, L. Sofia, K. Vessalas, P. Thomas, V. Sirivivatnanon & K. Scrivener, Efficacy of SCMs to mitigate ASR in systems with higher alkali contents assessed by pore solution method, Cem. Concr. Res., 142, (2021). [Google Scholar]
  4. E. Menendez, Á. Miguel, R. Garcia-Roves, & C. Argiz, Applied sciences Sustainable and Durable Performance of Pozzolanic Additions to Prevent Alkali-Silica Reaction (ASR), Appl. Sci., 10, (2020). [Google Scholar]
  5. T. Hanein, K. C. Thienel, F. Zunino, A. T. M. Marsh, M. Maier, B. Wang, M. Canut, M. C. G. Juenger, M. Ben Haha, F. Avet, A. Parashar, L. A. Al-Jaberi, R. S. Almenares-Reyes, A. Alujas-Diaz, K. L. Scrivener, S. A. Bernal, J. L. Provis, T. Sui, S. Bishnoi & F. Martirena-Hernández, Clay calcination technology: state-of-the-art review by the RILEM TC 282-CCL, Mat. & Struct., 55(1), (2022). [CrossRef] [Google Scholar]
  6. K. Scrivener, F. Martirena, S. Bishnoi, & S. Maity, Calcined clay limestone cements (LC3), Cem. Conc. Res., 114, 49–56, (2018). [CrossRef] [Google Scholar]
  7. A. Bhatt, S. Priyadarshini, A. Acharath Mohanakrishnan, A. Abri, M. Sattler & S. Techapaphawit, Physical, chemical, and geotechnical properties of coal fly ash: A global review. Case Stud. in Constr. Mat., 11, (2019). [Google Scholar]
  8. M. D. A. Thomas, Optimising the Use of Fly Ash in Concrete. Portland Cement Association, 24, (2007). [Google Scholar]
  9. H. Beushausen, M. Alexander, & Y. Ballim, Earlyage properties, strength development and heat of hydration of concrete containing various South African slags at different replacement ratios, Constr. Build. Mat., 29, 533–540, (2012). [CrossRef] [Google Scholar]
  10. A. T. Bakera, & M. G. Alexander, Properties of Western Cape Concretes with Metakaolin, MATEC Web of Conferences, 199, 1–14, (2018). [Google Scholar]
  11. G. I. E. Ekosse, Kaolin deposits and occurrences in Africa: Geology, mineralogy and utilisation. Appl. Clay Sci., 50(2), 212–236, (2010). [CrossRef] [Google Scholar]
  12. S. B. Singh, & M. Murugan, Effect of metakaolin on the properties of pervious concrete. Constr. Build. Mat., 346, (2022). [Google Scholar]
  13. R. Madandoust & S. Y. Mousavi, Fresh and hardened properties of self-compacting concrete containing metakaolin, Constr. Build. Mat., 35, 752-760, (2012). [CrossRef] [Google Scholar]
  14. S. Wei, K. Zheng, J. Zhou, G. Prateek & Q. Yuan, The combined effect of alkalis and aluminium in pore solution on alkali-silica reaction, Cem. Concr. Res., 154, (2022). [Google Scholar]
  15. H. Wang, L. Wang, X. Qian, K. Cao, Y. Xu, Y. Fang & L. Cui, Hydration, Compressive Strength and Durability of Eco-friendly Cement Mortars Containing Recycled Brick Powder and Metakaolin, KSCE Jour. Civ. Eng., 1-15, (2022). [Google Scholar]
  16. Y. Ouldkhaoua, B. Benabed, R. Abousnina, E. H. Kadri & J. Khatib, Effect of using metakaolin as supplementary cementitious material and recycled CRT funnel glass as fine aggregate on the durability of green self-compacting concrete. Construction and Building Materials, 235, (2020). [Google Scholar]
  17. O. Zaid, R. Martínez-García, A. A. Abadel, F. J. Fraile-Fernández, I. M. Alshaikh & C. PalenciaCoto, To determine the performance of metakaolinbased fiber-reinforced geopolymer concrete with recycled aggregates, Arch. Civ. & Mech. Eng., 22(3), 1-14, (2022). [CrossRef] [Google Scholar]
  18. M. Sonebi, W. Schmidt & J. Khatib, Influence of the type of viscosity-modifying admixtures and metakaolin on the rheology of grouts, Chem. Mater. Res, 5, 106-111, (2013). [Google Scholar]
  19. H. Dada, H. Soualhi, A. S. E. Belaidi, E. H. Kadri & B. Benabed, A study of the rheological behaviour of eco-friendly mortar made with metakaolin and marble powder at various ambient temperatures, Euro. Jour. Environ. & Civ. Eng., 1-16, (2022). [Google Scholar]
  20. R. Homayoonmehr, A. A. Ramezanianpour & M. Mirdarsoltany, Influence of metakaolin on fresh properties, mechanical properties and corrosion resistance of concrete and its sustainability issues: A review. Jour. Build. Eng., 44, (2021). [Google Scholar]
  21. N. Shafiq, M.F. Nuruddin, S.U. Khan, T. Ayub, Calcined kaolin as cement replacing material and its use in high strength concrete, Constr. Build. Mat., 81: 313–323, (2015). [CrossRef] [Google Scholar]
  22. El-Din, H.K.S.; Eisa, A.S.; Aziz, B.H.A.; Ibrahim, A. 2017. Mechanical performance of high strength concrete made from high volume of Metakaolin and hybrid fibers. Constr. Build. Mater., 140, 203–209. [CrossRef] [Google Scholar]
  23. N. Chalangaran, A. Farzampour, N. Paslar, Nano Silica and Metakaolin Effects on the Behaviour of Concrete Containing Rubber Crumbs, MDPI, Civil Eng., 1, 264–274, (2020). [Google Scholar]
  24. S. Cheng, Z. Shui, T. Sun, R. Yu, G. Zhang, S. Ding, Effects of fly ash, blast furnace slag and metakaolin on mechanical properties and durability of coral sand concrete, Appl. Clay Sci., 141: 111–117, (2017). [CrossRef] [Google Scholar]
  25. K.H. Younis, Metakaolin modified recycled aggregate concrete containing recycled steel fibers, Materials Today: Proceedings, 45:4689–4694, (2021). [CrossRef] [Google Scholar]
  26. Z. Ali Hasan, M.S. Nasr, M.K. Abed, Properties of reactive powder concrete containing different combinations of fly ash and metakaolin, Materials Today: Proceedings, 42: 2436–2440, (2021). [CrossRef] [Google Scholar]
  27. W. Schmidt, M. Alexander, & V. John, Education for sustainable use of cement-based materials. Cem. Concr. Res., 114, 103–114, (2018). [CrossRef] [Google Scholar]
  28. M. G. Alexander, J. R. Mackechnie, Y. Ballim, Guide to the use of durability indexes for achieving durability in concrete structures, (1999). [Google Scholar]
  29. V. M. Malhotra, et. al., Long-term mechanical properties and durability characteristics of highstrength/high-performance concrete incorporating supplementary cementing materials under outdoor exposure conditions. ACI Mat. Jour., 97(5), 518525, (2000). [Google Scholar]
  30. T. R. Naik et al., Long-term performance of highvolume fly ash concrete pavements, ACI Mat. Jour., 100(2), 150-155, (2003). [Google Scholar]
  31. S. Sujjavanich, P. Suwanvitaya, D. Chaysuwan & G. Heness, G. Synergistic effect of metakaolin and fly ash on properties of concrete. Constr. Build. Mat., 155, 830–837, (2017). [CrossRef] [Google Scholar]
  32. J. Mackechnie, Laboratory Trials with Western Cape Metakaolin, Concrete Beton, 87, 16–23, (1997). [Google Scholar]
  33. D. L. Pillay, O. B. Olalusi, M. W. Kiliswa, P. O. Awoyera, J. T. Kolawole, & A. J. Babafemi, Engineering performance of metakaolin based concrete. Cleaner Eng. Tech., 6, (2022). [Google Scholar]
  34. J. Wei, B. Gencturk, A. Jain & M. Hanifehzadeh, Mitigating alkali-silica reaction induced concrete degradation through cement substitution by metakaolin and bentonite, Appl. Clay Sci., 182, (2019). [Google Scholar]
  35. M. Thomas, The effect of supplementary cementing materials on alkali-silica reaction: A review, Cem. Concr. Res. 41(12), 1224–1231, (2011). [CrossRef] [Google Scholar]
  36. T. Chappex & K. Scrivener, Controlling AlkaliSilica Reaction By Understanding the Contribution of Aluminium Provided By Supplementary, 14th International Conference on Alkali Aggregate Reaction, 11–13, (2012). [Google Scholar]
  37. X. Hou, L. J. Struble & R. J. Kirkpatrick, Formation of ASR gel and the roles of C-S-H and portlandite, Cem. Concr. Res., 34(9), 1683–1696, (2004). [CrossRef] [Google Scholar]
  38. S. Y. Hong & F. P. Glasser, Alkali binding in cement pastes: Part I. The C-S-H phase, Cem. Concr. Res., 29(12), 1893–1903, (1999). [CrossRef] [Google Scholar]
  39. S. Y. Hong & F. P. Glasser, Alkali sorption by C-SH and C-A-S-H gels: Part II. Role of alumina. Cem. Concr. Res., 32(7), 1101–1111, (2002). [CrossRef] [Google Scholar]
  40. S. Wei, K. Zheng, J. Zhou, G. Prateek & Q. Yuan, The combined effect of alkalis and aluminium in pore solution on alkali-silica reaction, Cem. Concr. Res., 154, (2022). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.