Open Access
MATEC Web Conf.
Volume 361, 2022
Concrete Solutions 2022 – 8th International Conference on Concrete Repair, Durability & Technology
Article Number 05007
Number of page(s) 5
Section Theme 5 - Concrete and Admixture Technology
Published online 30 June 2022
  1. B. B. Jindal, admixtures: A review’, Constr. Build. Mater., 227 (2019) [Google Scholar]
  2. A. Naghizadeh and S. Ekolu, J. Materials and Structures, 55, 1, online 1-16 (2022) [CrossRef] [Google Scholar]
  3. A.R. Boccaccini, J. Ceram. Sci. Technol., 3 (2017) [Google Scholar]
  4. K. Reynolds-Clausen and N. Singh, Coal Combust. Gasif. Prod., pp. 8 (2019) [Google Scholar]
  5. G. H. A. Ting, Y. W. D. Tay, Y. Qian, and M. J. Tan, J. Mater. Cycles Waste Manag., 21, 4, pp. 994–1003 (2019) [CrossRef] [Google Scholar]
  6. Y. Jani and W. Hogland, J. Environ. Chem. Eng., 2, 3, pp. 1767–1775 (2014) [CrossRef] [Google Scholar]
  7. M. U. Christiansen, Doctor of Philosophy in Civil Engineering, Michigan Technological University, Houghton, Michigan (2013) [Google Scholar]
  8. B. Zhang, P. He, and C. S. Poon, J. Clean. Prod., 255 (2020) [Google Scholar]
  9. A. Hajimohammadi, T. Ngo, and A. Kashani, J. Clean. Prod., 193, pp. 593–603 (2018) [CrossRef] [Google Scholar]
  10. X. Jiang, R. Xiao, Y. Ma, M. Zhang, Y. Bai, and B. Huang, Constr. Build. Mater., 262, (2020) [Google Scholar]
  11. P. Topark-Ngarm, T. Tho-In, V. Sata, P. Chindaprasirt, and T. Cao, Key Eng. Mater., 801, pp. 397–403 (2019) [CrossRef] [Google Scholar]
  12. M. Vafaei and A. Allahverdi, Adv. Powder Technol.,. 28, 1, pp. 215–222 (2017) [CrossRef] [Google Scholar]
  13. T. Tho-In, V. Sata, K. Boonserm, and P. Chindaprasirt, J. Clean. Prod., 172, pp. 2892–2898 (2018) [CrossRef] [Google Scholar]
  14. A. B. Pascual, Int. J. Res. Eng. Technol., 3, 25, pp. 32–36 (2014) [Google Scholar]
  15. M. Torres-Carrasco and F. Puertas, J. Clean. Prod., 90, pp. 397–408 (2015) [CrossRef] [Google Scholar]
  16. Md. N. N. Khan, J. C. Kuri, and P. K. Sarker, J. Build. Eng., 34 (2021) [Google Scholar]
  17. H. Sethi, P. P. Bansal, and R. Sharma, Iran. J. Sci. Technol. Trans. Civ. Eng., 43, 4, pp. 607–617 (2019) [CrossRef] [Google Scholar]
  18. O. Burciaga-Díaz, M. Durón-Sifuentes, J. A. Díaz-Guillén, and J. I. Escalante-García, Cem. Concr. Compos., 107 (2020) [Google Scholar]
  19. G. Liu, M. V. A. Florea, and H. J. H. Brouwers, Mater. Struct., 52, 5 (2019) [CrossRef] [Google Scholar]
  20. A.R. Boccaccini, J. Ceram. Sci. Technol., 3 (2017) [Google Scholar]
  21. P. S. Deb, P. Nath, and P. K. Sarker, Procedia Engineering., 125, pp. 594–600 (2015) [CrossRef] [Google Scholar]
  22. S. E. Wallah, Mod. Appl. Sci., 3, 12, pp. 14 (2009) [CrossRef] [Google Scholar]
  23. A. Castel, S. J. Foster, T. Ng, J. G. Sanjayan, and R. I. Gilbert, ‘Creep and drying shrinkage of a blended slag and low calcium fly ash geopolymer Concrete’, Mater. Struct., vol. 49, no. 5, pp. 1619–1628 (2016) [CrossRef] [Google Scholar]
  24. A. Siddika, A. Hajimohammadi, Md. A. A. Mamun, R. Alyousef, and W. Ferdous, Polymers, 13, 13 (2021) [Google Scholar]
  25. M. Mastali, P. Kinnunen, A. Dalvand, R. Mohammadi Firouz, and M. Illikainen, Constr. Build. Mater., 190, pp. 533–550 (2018) [CrossRef] [Google Scholar]
  26. Z. Abdollahnejad, Z. Zhang, H. Wang, and M. Mastali, High Tech Concrete: Where Technology and Engineering Meet, pp. 42–48 (2018) [CrossRef] [Google Scholar]
  27. S. E. Wallah and B. V. Rangan, Low-Calcium Fly Ash-Based Geopolymer Concrete: Long-Term Properties, Research Report, Curtin University of Technology Perth, Australia (2006) [Google Scholar]
  28. J.-X. Lu, H. Zheng, S. Yang, P. He, and C. S. Poon, Constr. Build. Mater., 223, pp. 210–220 (2019). [CrossRef] [Google Scholar]
  29. Md. N. N. Khan and P. K. Sarker, Constr. Build. Mater., 263 (2020) [Google Scholar]
  30. A. Hajimohammadi, T. Ngo, and A. Kashani, Constr. Build. Mater., 171, p. 223–231 (2018) [CrossRef] [Google Scholar]
  31. A. Naghizadeh and S. O. Ekolu, Silicon, 13, 12, pp. 4669–4680 (2021) [CrossRef] [Google Scholar]
  32. A. Naghizadeh and S. O. Ekolu, 6th International Conference on the Durability of Concrete Structures, 18 - 20 July (2018), Leeds, United Kingdom, 315 - 319. [Google Scholar]
  33. ASTM International, Test Method for Flow of Hydraulic Cement Mortar (2020) [Google Scholar]
  34. ASTM International, Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens) (2020) [Google Scholar]
  35. ASTM International, Test Method for Drying Shrinkage of Mortar Containing Hydraulic Cement (2018) [Google Scholar]
  36. S. C. Kou and C. S. Poon, Cem. Concr. Compos., 31, 2, pp. 107–113 (2009) [CrossRef] [Google Scholar]
  37. T. Phoo-ngernkham, S. Hanjitsuwan, N. Damrongwiriyanupap, P. Chindaprasirt, Cons. and Buil. Mater., 98 (2015) [Google Scholar]
  38. S. B. Park, B. C. Lee, and J. H. Kim, Cem. Concr. Res., 34, 12 (2004) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.