Open Access
Issue
MATEC Web Conf.
Volume 358, 2022
3rd International Symposium on Mechanics, Structures and Materials Science (MSMS 2022)
Article Number 01024
Number of page(s) 6
DOI https://doi.org/10.1051/matecconf/202235801024
Published online 19 May 2022
  1. T. Yang, Y. Liu, Z. Huang, J. Liu, P. Bian, C.D. Ling, H. Liu, G. Wang, R. Zheng, In situ growth of ZnO nanodots on carbon hierarchical hollow spheres as high-performance electrodes for lithium-ion batteries, Journal of Alloys and Compounds, 735 (2018) 1079-1087. [CrossRef] [Google Scholar]
  2. X. Liu, Y. Yang, X. Xing, Y. Wang, Grey level replaces fluorescent intensity: Fluorescent paper sensor based on ZnO nanoparticles for quantitative detection of Cu2+ without photoluminescence spectrometer, Sensors and Actuators B: Chemical, 255 (2018) 2356-2366. [CrossRef] [Google Scholar]
  3. M.W. Maswanganye, K.E. Rammutla, T.E. Mosuang, B.W. Mwakikunga, The effect of Co and In combinational or individual doping on the structural, optical and selective sensing properties of ZnO nanoparticles, Sensors and Actuators B: Chemical, 247 (2017) 228-237. [CrossRef] [Google Scholar]
  4. T. Zhao, L. Zhang, L. Li, G. Zhang, Kankan, K. Shi, Synthesis, characterization and sensing properties of ZnO-modified BN–FeB49, Journal of Alloys and Compounds, 600 (2014) 130-136. [CrossRef] [Google Scholar]
  5. A. Erol, S. Okur, B. Comba, Ö. Mermer, M.Ç. Arıkan, Humidity sensing properties of ZnO nanoparticles synthesized by sol–gel process, Sensors and Actuators B: Chemical, 145 (2010) 174-180. [CrossRef] [Google Scholar]
  6. N. Mary Jacob, T. Thomas, Digestive ripening and green synthesis of ultra-small (r<2nm) stable ZnO quantum dots, Ceramics International, 40 (2014) 13945-13952. [CrossRef] [Google Scholar]
  7. W. Riedel, Y. Fu, Ü. Aksünger, J. Kavalakkatt, C.-H. Fischer, M.C. Lux-Steiner, S. Gledhill, ZnO and ZnS nanodots deposited by spray methods: A versatile tool for nucleation control in electrochemical ZnO nanorod array growth, Thin Solid Films, 589 (2015) 327-330. [CrossRef] [Google Scholar]
  8. Y. Yin, Y. Sun, M. Yu, X. Liu, B. Yang, D. Liu, S. Liu, W. Cao, M.N.R. Ashfold, Arrays of nanorods composed of ZnO nanodots exhibiting enhanced UV emission and stability, Nanoscale, 6 (2014) 10746-10751. [CrossRef] [Google Scholar]
  9. C. Zhang, F. Zhu, H. Xu, W. Liu, L. Yang, Z. Wang, J. Ma, Z. Kang, Y. Liu, Significant improvement of near-UV electroluminescence from ZnO quantum dot LEDs via coupling with carbon nanodot surface plasmons, Nanoscale, 9 (2017) 14592-14601. [CrossRef] [Google Scholar]
  10. Y. Xia, Z. Tang, Monodisperse inorganic supraparticles: formation mechanism, properties and applications, Chemical Communications, 48 (2012) 6320. [CrossRef] [Google Scholar]
  11. Q. Liu, Z. Sun, Y. Dou, J.H. Kim, S.X. Dou, Twostep self-assembly of hierarchically-ordered nanostructures, Journal of Materials Chemistry A, 3 (2015) 11688-11699. [CrossRef] [Google Scholar]
  12. X. Chen, X. Song, W. Qiao, X. Zhang, Y. Sun, X. Xu, W. Zhong, Y. Du, Solvent-directed and anion-modulated self-assemblies of nanoparticles: a case of ZnO, CrystEngComm, 18 (2016) 9139-9151. [CrossRef] [Google Scholar]
  13. M. Ali, H. Rahaman, D.S. Rahman, S. Nath, S.K. Ghosh, Water/n-heptane interface as a viable platform for the self-assembly of ZnO nanospheres to nanorods, CrystEngComm, 16 (2014) 7696-7700. [CrossRef] [Google Scholar]
  14. A.N. Mallika, A. Ramachandra Reddy, K. Sowri Babu, C. Sujatha, K. Venugopal Reddy, Structural and photoluminescence properties of Mg substituted ZnO nanoparticles, Optical Materials, 36 (2014) 879-884. [CrossRef] [Google Scholar]
  15. H. Zhong, J. Wang, M. Pan, S. Wang, Z. Li, W. Xu, X. Chen, W. Lu, Preparation and photoluminescence of ZnO nanorods, Materials Chemistry and Physics, 97 (2006) 390-393. [CrossRef] [Google Scholar]
  16. A.N. Gruzintsev, V.T. Volkov, G.A. Emelchenko, I.A. Karpov, W.M. Maslov, G.M. Michailov, E.E. Yakimov, Luminescence of two-dimensional ordered array of the ZnO quantum nanodots, obtained by means of the synthetic opal, Thin Solid Films, 459 (2004) 111-114. [Google Scholar]
  17. B.B. Choi, N. Myung, K. Rajeshwar, Double template electrosynthesis of ZnO nanodot array, Electrochemistry Communications, 9 (2007) 1592-1595. [CrossRef] [Google Scholar]
  18. S.-W. Kim, T. Kotani, M. Ueda, S. Fujita, S. Fujita, Selective growth of ZnO nanodots prepared by metalorganic chemical vapor deposition on focusedion beam-nanopatterned substrates, Physica E: Lowdimensional Systems and Nanostructures, 21 (2004) 601-605. [CrossRef] [Google Scholar]
  19. K. Kametani, H. Imamoto, S. Fujita, Formation of ZnO nanodot arrays along the step edges on R-face sapphire by metalorganic chemical vapor deposition, Physica E: Low-dimensional Systems and Nanostructures, 32 (2006) 33-36. [CrossRef] [Google Scholar]
  20. R. O’Haire, A. Meaney, E. McGlynn, M.O. Henry, J.R. Duclère, J.P. Mosnier, Growth of crystalline ZnO nanostructures using pulsed laser deposition, Superlattices and Microstructures, 39 (2006) 153-161. [CrossRef] [Google Scholar]
  21. J. Kaupužs, A. Medvids, P. Onufrijevs, H. Mimura, Origin of n-type conductivity in ZnO crystal and formation of Zn and ZnO nanoparticles by laser radiation, Optics & Laser Technology, 111 (2019) 121-128. [CrossRef] [Google Scholar]
  22. A.u.H.S. Rana, J.Y. Lee, Y.-P. Hong, H.-S. Kim, Transient Current Response for ZnO Nanorod-Based Doubly Transparent UV Sensor Fabricated on Flexible Substrate, physica status solidi (RRL) - Rapid Research Letters, 12 (2018) 1800001. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.