Open Access
Issue
MATEC Web Conf.
Volume 357, 2022
25th Polish-Slovak Scientific Conference on Machine Modelling and Simulations (MMS 2020)
Article Number 03006
Number of page(s) 16
Section Machine Dynamics and Multibody Systems Simulation
DOI https://doi.org/10.1051/matecconf/202235703006
Published online 22 June 2022
  1. J. Kopowski, I. Rojek, D. Mikołajewski, M. Macko 3D Printed Hand Exoskeleton - Own Concept. In: Advances in Manufacturing II. Vol. 1 - Solutions for Industry 4.0 / eds. Justyna Trojanowska, Olaf Ciszak, José Mendes Machado, Ivan Pavlenko. Springer, Cham, pp 298–306 (2019). [Google Scholar]
  2. A. Omer, H. Kenji, H. Lim, A. Takanashi Study of Bipedal Robot Walking Motion in Low Gravity: Investigation and Analysis. Int J Adv Robot Syst (2014). [Google Scholar]
  3. T. Maeda, T. Ishizuka S. Yamaji, Y. Ohgi A Force Platform Free Gait Analysis Proceedings, 2, 207 (2018). [Google Scholar]
  4. J.M.R.S. Tavares, R.M. Natal Jorge Image processing and analysis in biomechanics. EURASIP J Adv Signal Process (2010). [Google Scholar]
  5. X. Jiang, M. Gholami, M. Khoshnam, et al. Estimation of ankle joint power during walking using two inertial sensors. Sensors (Switzerland) 19, 1–11 (2019). [Google Scholar]
  6. W. Tao, T. Liu, R. Zheng, H. Feng Gait analysis using wearable sensors Sensors 12, 2255–2283 (2012). [CrossRef] [Google Scholar]
  7. P.D.E. Arus, E. Arus The Fundamentals of Biomechanics, 2nd ed. Springer (2018). [Google Scholar]
  8. M.W. Spong, S. Hutchinson, M. Vidyasagar Robot dynamics and control, 1st ed. John Wiley & Sons (1989) [Google Scholar]
  9. A.D. Kuo The six determinants of gait and the inverted pendulum analogy: A dynamic walking perspective Hum Mov Sci, 26, 617–656 (2007). [CrossRef] [Google Scholar]
  10. T. Mcgeer Passive Dynamic Walking Int J Rob Res, 9, 62–82 (1999). [Google Scholar]
  11. A. Goswami, B. Thuilot, B. Espiau A study of the passive gait of a compass-like biped robot: Symmetry and chaos Int J Rob Res, 17, 1282–1301 (1998). [CrossRef] [Google Scholar]
  12. A. Goswami, B. Thuilot, B. Espiau B Compass-Like Biped Robot Part I : Stability and Bifurcation of Passive Gaits. Res Report] 2996–73701 (1996). [Google Scholar]
  13. M. Garcia, A. Chatterjee, A. Ruina, M. Coleman The Simplest Walking Model: Stability, Complexity, and Scaling J Biomech Eng 120, 281–288, 1998. [CrossRef] [Google Scholar]
  14. S. Mochon, T.A. McMahon Ballistic walking. J Biomech 52:241–260, (1980). [Google Scholar]
  15. S.M. Nacy, S.S. Hassan A Modified Dynamic Model of the Human Lower Limb During Complete Gait Cycle Int J od Mech Eng Robot Res 2, 12 (2013). [Google Scholar]
  16. M.S. Shourijeh, J. McPhee Foot-ground contact modeling within human gait simulations: from Kelvin-Voigt to hyper-volumetric models. Multibody Syst Dyn 35:393–407 (2015). [CrossRef] [Google Scholar]
  17. K. Cerny Williams and Lissner: Biomechanics of Human Motion (1978). [Google Scholar]
  18. G. Bovi, M. Rabuffetti, P. Mazzoleni, M. Ferrarin A multiple-task gait analysis approach: Kinematic, kinetic and EMG reference data for healthy young and adult subjects Gait Posture 33, 6–13 (2011). [CrossRef] [Google Scholar]
  19. D.F. Griffiths, D.J. Higham S. Undergraduate, M. Series Euler’s Method BT - Numerical Methods for Ordinary Differential Equations: Initial Value Problems. In: Griffiths, D.F., Higham D.J. (eds) Numerical Methods for Ordinary Differential Equations. Springer London, London, pp 19–31 (2010). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.