Open Access
Issue |
MATEC Web Conf.
Volume 357, 2022
25th Polish-Slovak Scientific Conference on Machine Modelling and Simulations (MMS 2020)
|
|
---|---|---|
Article Number | 03005 | |
Number of page(s) | 13 | |
Section | Machine Dynamics and Multibody Systems Simulation | |
DOI | https://doi.org/10.1051/matecconf/202235703005 | |
Published online | 22 June 2022 |
- R.M. Andrade, S. Sapienza, P. Bonato Development of a “transparent operation mode” for a lower-limb exoskeleton designed for children with cerebral palsy. IEEE Int. Conf. Rehabil. Robot. 512–517 (2019). [Google Scholar]
- A. Esquenazi, M. Talaty, A. Packel, M. Saulino The Rewalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury Am. J. Phys. Med. Rehabil. 91, 911–921 (2012). [CrossRef] [Google Scholar]
- D.B. Fineberg, P. Asselin, N.Y. Harel, I. Agranova-Breyter, S.D. Kornfeld, W.A. Bauman, A.M. Spungen Vertical ground reaction force-based analysis of powered exoskeleton-assisted walking in persons with motor-complete paraplegia J. Spinal Cord Med. 36, 313–321 (2013). [CrossRef] [Google Scholar]
- M. Bortole, A. Venkatakrishnan, F. Zhu, J.C. Moreno, G.E. Francisco, J.L. Pons, J.L. Contreras-Vidal The H2 robotic exoskeleton for gait rehabilitation after stroke: Early findings from a clinical study Wearable robotics in clinical testing J. Neuroeng. Rehabil. 12, 1–14 (2015). [CrossRef] [Google Scholar]
- S. Hesse, C. Bertelt, M. Jahnke, A. Schaffrin, et al. Treadmill Training With Partial Body Weight Support Compared With Physiotherapy in Nonambulatory Hemiparetic Patients. Stroke 14 (1995). [Google Scholar]
- M. Talaty, A. Esquenazi, J.E. Briceno Differentiating ability in users of the ReWalkTM powered exoskeleton: An analysis of walking kinematics. IEEE Int. Conf. Rehabil. Robot. (2013). [Google Scholar]
- R. Rea, C. Beck, R. Rovekamp, M. Diftler, P. Neuhaus X1: A robotic exoskeleton for in-space countermeasures and dynamometry. AIAA Sp. 2013 Conf. Expo. 1–8 (2013). [Google Scholar]
- M.K. Reed, M.K. Reed LIFESUIT Exoskeleton Gives the Gift of Walking so They Shall Walk (2014). [Google Scholar]
- M.C. Yildirim, P. Sendur, A.F. Soliman, B. Ugurlu Optimal Stiffness Tuning for a Lower Body Exoskeleton with Spring-Supported Passive Joints. Proc. IEEE RAS EMBS Int. Conf. Biomed. Robot. Biomechatronics. 2018-August, 531–536 (2018). [Google Scholar]
- G. Zeilig, H. Weingarden, M. Zwecker, I. Dudkiewicz, A. Bloch, A. Esquenazi Safety and tolerance of the ReWalkTM exoskeleton suit for ambulation by people with complete spinal cord injury: A pilot study J. Spinal Cord Med. 35, 96–101 (2012). [CrossRef] [Google Scholar]
- A.J. Young, D.P. Ferris State of the art and future directions for lower limb robotic exoskeletons IEEE Trans. Neural Syst. Rehabil. Eng. 25, 171–182 (2017). [CrossRef] [Google Scholar]
- H. Weiguang, M. Same, J.C. Moreno et al. Lower Limb Wearable Robots for Assistance and Rehabilitation: A State of the Art. 5–200 (2016). [Google Scholar]
- J.C. Moreno, J. Figueiredo, J.L. Pons Exoskeletons for lower-limb rehabilitation. Elsevier Ltd. (2018). [Google Scholar]
- J.A. Reinbolt, A. Seth, S.L. Delp Simulation of human movement: applications using OpenSim. 2, 186–198 (2011). [Google Scholar]
- Y. Sankai HAL: Hybrid assistive limb based on cybernics Springer Tracts Adv. Robot. 66, 25–34 (2010). [CrossRef] [Google Scholar]
- W. Tao, T. Liu, R. Zheng, H. Feng Gait analysis using wearable sensors Sensors. 12, 2255–2283 (2012). [CrossRef] [Google Scholar]
- A.M. Dollar, H. Herr Lower extremity exoskeletons and active orthoses: Challenges and state-of-the-art IEEE Trans. Robot. 24, 144–158 (2008). [CrossRef] [Google Scholar]
- S.L. Delp, F.C. Anderson, A.S. Arnold, P. Loan, A. Habib, C.T. John, E. Guendelman, D.G. Thelen OpenSim: Open-source software to create and analyze dynamic simulations of movement IEEE Trans. Biomed. Eng. 54, 1940–1950 (2007). [CrossRef] [Google Scholar]
- C.W.R.M. D The Causes of Paralysis of the Third, Fourth and Sixth Cranial Nerves. Am. J. Ophthalmol. 61, 1293–1298 (1964). [Google Scholar]
- S. Chauvie, M. Obertino, A. Papaleo, M. Ruspa, A. Solano, L. Gozzoli, A. Gagliano, A. Biggi A method for the visual analysis of early-stage Parkinson’s disease based on virtual MRI-derived SPECT images Int. J. Imaging Syst. Technol. 22, 172–176 (2012). [CrossRef] [Google Scholar]
- V. Bartenbach, M. Gort, R. Riener Concept and design of a modular lower limb exoskeleton. Proc. IEEE RAS EMBS Int. Conf. Biomed. Robot. Biomechatronics. 2016-July, 649–654 (2016). [Google Scholar]
- K. Suzuki, G. Mito, H. Kawamoto, Y. Sankai et al. Intention-based walking support for paraplegia patients with Robot Suit. 37–41 (2012). [Google Scholar]
- R.S. Mosher Handyman to Hardiman. 76, 588–597 (1968). [Google Scholar]
- J.A. Blaya, H. Herr Adaptive Control of a Variable-Impedance Ankle-Foot Orthosis to Assist Drop-Foot Gait. 12, 24–31 (2004). [Google Scholar]
- S. Maeshima, A. Osawa, D. Nishio, Y. Hirano, K. Takeda, H. Kigawa Efficacy of a hybrid assistive limb in post-stroke hemiplegic patients : a preliminary report (2011). [Google Scholar]
- H. Kawainot, S. Lee, S. Kanbe, Y. Sankai Power Assist Method for HAL-3 using EMG-based Feedback Controller. 1648–1653 (2003). [Google Scholar]
- J.O.F. Neuroengineering Gait training early after stroke with a new exoskeleton - the hybrid assistive limb : a study of safety and feasibility Gait training early after stroke with a new exoskeleton - the hybrid assistive limb: a study of safety and feasibility. (2014). [Google Scholar]
- C. Hartigan, C. Kandilakis, S. Dalley, M. Clausen, E. Wilson, S. Morrison, S. Etheridge, R. Farris Mobility outcomes following five training sessions with a powered exoskeleton. Top. Spinal Cord Inj. Rehabil. (2015). [Google Scholar]
- E. Guizzo, H. Goldstein The rise of the body bots IEEE Spectr. 42, 50–56 (2005). [CrossRef] [Google Scholar]
- J.L. Pons Wearable Robots: Biomechatronic Exoskeletons, New York, NY, USA: Wiley (2008). [Google Scholar]
- J. Andreu Perez, F. Deligianni, D. Ravi, G.Z. Yang Artificial Intelligence and Robotics. (2018). [Google Scholar]
- Let the FORTIS® Tool Arm Give You a Hand! - Apr 20, 2017, https://news.lockheedmartin.com/2017-04-20-Let-the-FORTIS-R-Tool-Arm-Give-You-a-Hand - access 03.08.2020. [Google Scholar]
- Business Wire, Global Exoskeleton Market (2020 to 2027) - Size, Share & Trends Analysis Report by Technology Type, Technology Drive Type, End User, Region and Segment Forecasts-ResearchAndMarkets.com, https://www.busineswire.com/news/home/202004-08005612/en/Global-Exoskeleton-Market-2020-2027 - access 03.08.2020. [Google Scholar]
- J. Kopowski, D. Mikołajewski, M. Macko, I. Rojek Bydgostian hand exoskeleton - Own concept and the biomedical factors Bio-Algorithms and Med-Systems. 15, (2019). [CrossRef] [Google Scholar]
- J. Dabros, M. Iwaniec, M. Patyk, J. Wesol User movement intention detection based on gait cycle capturing using force sensitive resistors. In: 2018 14th International Conference on Perspective Technologies and Methods in MEMS Design, MEMSTECH 2018 - Proceedings. pp. 219–222. Institute of Electrical and Electronics Engineers Inc. (2018). [CrossRef] [Google Scholar]
- M. Broniszewski, J. Dabros, M. Iwaniec, M. Patyk, J. Wesol Gait Phase Recognition for Exoskeleton Control Using Adaptive Neuro Fuzzy Inference System. 845–0853 (2017). [Google Scholar]
- 1890 - Assisted-walking Device - Nicholas Yagn (Russian) - cyberneticzoo.com, http://cyberneticzoo.com/walking-machines/1890-assisted-walking-device-nicholas-yagn-russian/ - access 03.08.2021. [Google Scholar]
- 1965-71 - G.E. Hardiman I Exoskeleton - Ralph Mosher (American) - cyberneticzoo.com, http://cyberneticzoo.com/man-amplifiers/1966-69-g-e-hardiman-i-ralph-mosher-american/ - access 23.08.2020. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.