Open Access
MATEC Web Conf.
Volume 355, 2022
2021 International Conference on Physics, Computing and Mathematical (ICPCM2021)
Article Number 03042
Number of page(s) 10
Section Computing Methods and Computer Application
Published online 12 January 2022
  1. H. S. Becker, “Notes on the concept of commitment,” American journal of Sociology, vol. 66, no. 1, pp. 32-40, 1960. [CrossRef] [Google Scholar]
  2. W. Li et al., “EEG responses to emotional videos can quantitatively predict big-five personality traits,” Neurocomputing, vol. 415, pp. 368-381, 2020. [CrossRef] [Google Scholar]
  3. A. R. Butt, A. Arsalan, and M. Majid, “Multimodal Personality Trait Recognition using Wearable Sensors in Response to Public Speaking,” IEEE Sensors Journal, vol. PP, no. 99, pp. 1-1, 2020. [Google Scholar]
  4. F. Q. Annisa, E. Supriyanto, and S. Taheri, “Personality Dimensions Classification with EEG Analysis using Support Vector Machine,” in 2020 3rd International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), 2020, pp. 79-82: IEEE. [CrossRef] [Google Scholar]
  5. H. K. Jach, D. Feuerriegel, and L. D. Smillie, “Decoding Personality Trait Measures from Resting EEG: An Exploratory Report,” Cortex, vol. 130, 2020. [Google Scholar]
  6. L. Hu and Z. Zhang, EEG Signal Processing and Feature Extraction. Springer, 2019. [CrossRef] [Google Scholar]
  7. Y. Di, X. An, F. He, S. Liu, Y. Ke, and D. Ming, “Robustness Analysis of Identification Using Resting-State EEG Signals,” IEEE Access, vol. 7, pp. 4211342122, 2019. [Google Scholar]
  8. N. Hazarika, J. Z. Chen, A. C. Tsoi, and A. Sergejew, “Classification of EEG signals using the wavelet transform,” Signal processing, vol. 59, no. 1, pp. 61-72, 1997. [CrossRef] [Google Scholar]
  9. S. Mahato and S. Paul, “Detection of major depressive disorder using linear and nonlinear features from EEG signals,” Microsystem Technologies, vol. 25, no. 3, pp. 1065-1076, 2019. [CrossRef] [Google Scholar]
  10. Q. Zhao et al., “Nonlinear dynamic analysis of resting EEG alpha activity for heroin addicts,” in 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2016, pp. 533-537. [CrossRef] [Google Scholar]
  11. R. F. Ahmad, A. S. Malik, H. U. Amin, N. Kamel, and F. Reza, “Classification of cognitive and resting states of the brain using EEG features,” in 2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA), 2016, pp. 1-5. [Google Scholar]
  12. H. He et al., “Resting-state functional network connectivity in prefrontal regions differs between unmedicated patients with bipolar and major depressive disorders,” Journal of affective disorders, vol. 190, pp. 483-493, 2016. [CrossRef] [Google Scholar]
  13. Wang et al., “Study on brain functional network analysis and classification recognition in patients with cardiogenic non-epileptic seizure based on resting state EEG,” Journal Biomedical Engineering, vol. 32, no. 01, pp. 8-12, 2015. [Google Scholar]
  14. H. Lei, J. Fan, S. Zhou, J. Dong, and X. Zhu, “Resting state brain function network EEG study in patients with obsessive-compulsive disorder,” Chinese Mental Health Journal, vol. 6, 2018. [Google Scholar]
  15. F. Al-Shargie, U. Tariq, M. Alex, H. Mir, and H. Al-Nashash, “Emotion recognition based on fusion of local cortical activations and dynamic functional networks connectivity: An EEG study,” IEEE Access, vol. 7, pp. 143550-143562, 2019. [CrossRef] [Google Scholar]
  16. V. Gonuguntla, R. Mallipeddi, and K. C. Veluvolu, “Identification of emotion associated brain functional network with phase locking value,” in 2016 38Th Annual International Conference of the Ieee Engineering in Medicine and Biology Society (Embc), 2016, pp. 4515-4518: IEEE. [Google Scholar]
  17. M. Fraschini et al., “EEG functional network topology is associated with disability in patients with amyotrophic lateral sclerosis,” Scientific reports, vol. 6, no. 1, pp. 1-7, 2016. [Google Scholar]
  18. M. Yu et al., “Different functional connectivity and network topology in behavioral variant of frontotemporal dementia and Alzheimer’s disease: an EEG study,” Neurobiology of aging, vol. 42, pp. 150-162, 2016. [CrossRef] [Google Scholar]
  19. M. Bola and B. A. Sabel, “Dynamic reorganization of brain functional networks during cognition,” Neuroimage, vol. 114, pp. 398-413, 2015. [CrossRef] [Google Scholar]
  20. J. C. Henry, “Electroencephalography: basic principles, clinical applications, and related fields,” Neurology, vol. 67, no. 11, pp. 2092-2092-a, 2006. [CrossRef] [Google Scholar]
  21. J. P. Lachaux, E. Rodriguez, J. Martinerie, and F. J. Varela, “Measuring phase synchrony in brain signals,” Human brain mapping, vol. 8, no. 4, pp. 194-208, 1999. [CrossRef] [Google Scholar]
  22. M. Hardmeier, F. Hatz, H. Bousleiman, C. Schindler, C. J. Stam, and P. Fuhr, “Reproducibility of functional connectivity and graph measures based on the phase lag index (PLI) and weighted phase lag index (wPLI) derived from high resolution EEG,” PloS one, vol. 9, no. 10, p. e108648, 2014. [CrossRef] [Google Scholar]
  23. L. Wang, X. Guo, J. Sun, Z. Jin, and S. Tong, “Cortical networks of hemianopia stroke patients: a graph theoretical analysis of EEG signals at resting state,” in 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2012, pp. 49-52: IEEE. [CrossRef] [Google Scholar]
  24. M. Hardmeier et al., “Cognitive dysfunction in early multiple sclerosis: altered centrality derived from resting-state functional connectivity using magneto-encephalography,” PLoS One, vol. 7, no. 7, p. e42087, 2012. [CrossRef] [Google Scholar]
  25. C. M. Bishop, Pattern recognition and machine learning. springer, 2006. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.